Going beyond the Hill: An introduction to Multivariate Extreme Value Theory

Philippe Naveau naveau@lsce.ipsl.fr
Laboratoire des Sciences du Climat et l'Environnement (LSCE) Gif-sur-Yvette, France

FP7-ACQWA, GIS-PEPER, MIRACLE & ANR-McSim, MOPERA

22 juillet 2014
Statistics and Earth sciences

“There is, today, always a risk that specialists in two subjects, using languages full of words that are unintelligible without study, will grow up not only, without knowledge of each other’s work, but also will ignore the problems which require mutual assistance”.

QUIZ
- (A) Gilbert Walker
- (B) Ed Lorenz
- (C) Rol Madden
- (D) Francis Zwiers
EVT = Going beyond the data range

What is the probability of observing data above an high threshold?

March precipitation amounts recorded at Lille (France) from 1895 to 2002. The 17 black dots corresponds to the number of exceedances above the threshold $u_n = 75$ mm. This number can be conceptually viewed as a random sum of Bernoulli (binary) events.
An example in three dimensions

Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10 (center), and SO2 vs. NO (right) (Heffernan & Tawn 2004, Boldi & Davison, 2007)
Typical question in multivariate EVT

What is the probability of observing data in the blue box?
Siméon Denis Poisson (1781-1840)

Counting excesses
As a sum of random binary events, the variable N_n that counts the number of events above the threshold u_n has mean $n \Pr(X > u_n)$

Poisson's theorem \(^1\) in 1837
If u_n such that

\[
\lim_{n \to \infty} n \Pr(X > u_n) = \lambda \in (0, \infty).
\]

then N_n follows approximately a Poisson variable \mathcal{N}.

1. Give HW
Poisson and maxima

Counting = max

\[Pr(M_n \leq u_n) = Pr(N_n = 0) \text{ with } M_n = \max(X_1, \ldots, X_n) \]

Poisson’s at work

\[\lim_{n \to \infty} Pr(M_n \leq u_n) = \lim_{n \to \infty} Pr(N_n = 0) = Pr(N = 0) = \exp(-\lambda) \]
Equivalences

Motivation
Basics
MRV
Max-stable
MEV
PAM
MOM
BHM
Spectral

Maxima

Tail behavior

Counting exceedances

High quantiles
An univariate summary
A few studies linking EVT with geophysical extremes

- Casson and Coles (1999) a Bayesian hierarchical model for wind speeds exceedances
- Stephenson and Tawn (2005) Bayesian modeling of sea-level and rainfall extremes
- Cooley et al. (2007) a Bayesian hierarchical GPD model that pooled precipitation data from different locations
- Chavez and Davison (2005) GAM for extreme temperatures (NAO)
- Wang et al. (2004) Wave heights with covariates
- Turkman et al. (2007), Spatial extremes of wildfire sizes
- Lichenometry, Jomelli et al., 2007
- Hydrology Katz et al.
- Downscaling Vrac M., Kallache M., Rust H., Friedrichs P., etc
- GCMs and RCMS analysis Zwiers F., Maraun D., etc
- Attribution Smith R.
Limits of the univariate approach

Independence or conditional independence assumptions

Observed

BHM with CI assumption

Ribatet, Cooley and Davison (2010)
Why is Multivariate EVT needed?

- Compute confidence intervals
- Calculating probabilities of joint extreme events
- Clustering of regions
- Extrapolation of extremes
- Downscaling of extremes
- Trading time for space (for small data sets)
- etc
A fundamental question for iid bivariate vector \((X_i, Y_i)\)

Suppose that we have unit Fréchet margins at the limit

\[
\lim_{n \to \infty} P\left(\frac{\max(X_1, \ldots, X_n)}{a_n} \leq x \right) = \lim_{n \to \infty} P\left(\frac{\max(Y_1, \ldots, Y_n)}{a_n} \leq x \right) = \exp(-x^{-1})
\]

with \(a_n\) such that

\[
P(X > a_n) = \frac{1}{n}
\]

2. L. de Hann, S. Resnick
A fundamental question for iid bivariate vector \((X_i, Y_i)\)

Suppose that we have unit Fréchet margins at the limit

\[
\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x) = \lim_{n \to \infty} P(\max(Y_1, \ldots, Y_n)/a_n \leq x) = \exp(-x^{-1})
\]

with \(a_n\) such that

\[
P(X > a_n) = 1/n
\]

\[
\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = ??
\]

2. L. de Hann, S. Resnick
Why is the solution so ugly?

If

$$\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = G(x, y)$$

then

$$G(x, y) = \exp \left(- \int_{0}^{1} \max \left(\frac{w}{x}, \frac{1-w}{y} \right) dH(w) \right)$$

where $H(.)$ such that $\int_{0}^{1} w \, dH(w) = 1$
Still counting

$$P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = P(N_n(A) = 0)$$
Still counting

\[P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = P(N_n(A) = 0) \]

Poisson again

If

\[\lim_{n \to \infty} E(N_n(A)) = \Lambda(A), \]

then

\[\lim_{n \to \infty} P(N_n(A) = 0) = P(N(A) = 0) = \exp(-\Lambda(A)) \]
Still counting

\[P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = P(N_n(A) = 0) \]

Poisson again

If

\[\lim_{n \to \infty} E(N_n(A)) = \Lambda(A), \]

then

\[\lim_{n \to \infty} P(N_n(A) = 0) = P(N(A) = 0) = \exp(-\Lambda(A)) \]

One of the main question

- What are the properties of \(\Lambda(A) \)?
Back to univariate case: Fréchet margins

Poisson condition

\[
\lim_{n \to \infty} nP(X/a_n \in A_x) = \Lambda_x(A_x)
\]

with

\[
\Lambda_x(A_x) = x^{-1}, \text{ for } A_x = [x, \infty)
\]
Special cases

The independent case

\[\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = \]

\[\exp(-x^{-1} - y^{-1}) \]

Hence

\[x^{-1} + y^{-1} = \Lambda(x) + \Lambda(y) = \Lambda(x+y) \]
Special cases

The independent case

\[
\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = \exp(-x^{-1} - y^{-1})
\]

Hence

\[
x^{-1} + y^{-1} = \Lambda_x(A_x) + \Lambda_y(A_y) = \Lambda(A)
\]
Special cases

The independent case

\[\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = \exp(-x^{-1} - y^{-1}) \]

Hence

\[x^{-1} + y^{-1} = \Lambda_x(A_x) + \Lambda_y(A_y) = \Lambda(A) \]

The general case

\[\Lambda(A) \leq \Lambda_x(A_x) + \Lambda_y(A_y) \]
The dependent case $X_i = Y_i$

$$\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = \exp\left(-\max\left(\frac{1}{x}, \frac{1}{y}\right)\right)$$
Special cases

The dependent case $X_i = Y_i$

$$\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = \exp(-\max(1/x, 1/y))$$

Hence,

$$\max(1/x, 1/y) = \max(\Lambda_x(A_x), \Lambda_x(A_y)) = \Lambda(A)$$
Special cases

The dependent case $X_i = Y_i$

$$
\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = \exp(-\max(1/x, 1/y))
$$

Hence,

$$
\max(1/x, 1/y) = \max(\Lambda_x(A_x), \Lambda_y(A_y)) = \Lambda(A)
$$

The general case

$$
\max(\Lambda_x(A_x), \Lambda_y(A_y)) \leq \Lambda(A)
$$
The dependent case \(X_i = Y_i \)

\[
\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = \exp(-\max(1/x, 1/y))
\]

Hence,

\[
\max(1/x, 1/y) = \max(\Lambda_x(A_x), \Lambda_x(A_y)) = \Lambda(A)
\]

The general case

\[
\max(\Lambda_x(A_x), \Lambda_x(A_y)) \leq \Lambda(A)
\]

\[
\max(\Lambda_x(A_x), \Lambda_x(A_y)) \leq \Lambda(A) \leq \Lambda_x(A_x) + \Lambda_y(A_y)
\]
Scaling property

Univariate case with $\Lambda_x(A_x) = x^{-1}$

$\Lambda_x(tA_x) = t^{-1}\Lambda_x(A_x)$

Bivariate case

$\Lambda(tA) = t^{-1}\Lambda(A)$?
Going back to maxima

\[
\lim_{n \to \infty} P\left(\frac{\max(X_1, \ldots, X_n)}{a_n} \leq x, \frac{\max(Y_1, \ldots, Y_n)}{a_n} \leq y \right) = \exp(-\Lambda(A))
= P(M_X \leq x, M_Y \leq y)
\]
Going back to maxima

\[P(M_X \leq x, M_Y \leq y) = \exp(-\Lambda(A)) \]

Scaling

\[\Lambda(tA) = t^{-1}\Lambda(A) \]

is equivalent to

Max-stability

\[P^t(M_X \leq t x, M_Y \leq t y) = (\exp(-\Lambda(tA)))^t = \exp(-t\Lambda(tA)) \]
\[= \exp(-\Lambda(A)) \]
\[= P(M_X \leq x, M_Y \leq y) \]
The scaling property is an essential property of inference.

$$\Lambda(tA) = t^{-\alpha} \Lambda(A)$$

This property indicates how the intensity function scales with the size of the set.

Area with data points

A

tA

$t^{-\alpha}$

t^α
Interpreting the scaling property $\Lambda(tA) = t^{-1} \Lambda(A)$ with $\|y\| = y_1 + y_2$
Interpreting the scaling property $\Lambda(tA) = t^{-1}\Lambda(A)$

A special case

$$A = \{z = (x, y) : z/||z|| \in B \text{ and } ||z|| > 1\}$$

where $||z|| = x + y$ and B any set belonging to the unit sphere

A surprising property

$$tA = \{tz : z/||z|| \in B \text{ and } ||z|| > 1\},$$
$$= \{u : u/||u|| \in B \text{ and } ||u|| > t\}, \text{ with } u = tz.$$

This implies

$$\Lambda(\{u : u/||u|| \in B \text{ and } ||u|| > t\}) = t^{-1}H(B)$$

where $H(\cdot)$ is the mean measure restricted to the unit sphere and often called the spectral measure.
Interpreting the scaling property $\Lambda(tA) = t^{-1}\Lambda(A)$

A special case

$$A = \{z = (x, y) : z/||z|| \in B \text{ and } ||z|| > 1\}$$

where $||z|| = x + y$ and B any set belonging to the unit sphere

A surprising property

$$tA = \{tz : z/||z|| \in B \text{ and } ||z|| > 1\} = \{u : u/||u|| \in B \text{ and } ||u|| > t\}, \text{ with } u = tz.$$

This implies

$$\Lambda(\{u : u/||u|| \in B \text{ and } ||u|| > t\}) = t^{-1}H(B)$$

where $H(.)$ is the mean measure restricted to the unit sphere and often called the spectral measure.

Independence between the strength of event $||z|| = x + y$ and the location on the unit simplex
Polar coordinates

2D

\[r = (u + v) \text{ and } \]
\[\theta_1 = \frac{u}{r}, \theta_2 = \frac{v}{r} \]

3D

\[r = (u + v + w), \]
\[\theta_1 = \frac{u}{r}, \theta_2 = \frac{v}{r}, \theta_3 = \frac{w}{r} \]
2D Polar coordinates

2D : INDEPENDENT CASE

\[r = (u + v) \quad \text{and} \]
\[\theta_1 = \frac{u}{r}, \theta_2 = \frac{v}{r} \]

2D : COMPLETE DEPENDENCE

\[r = (u + v) \quad \text{and} \]
\[\theta_1 = \frac{u}{r}, \theta_2 = \frac{v}{r} \]
Again, back to maxima

\[
\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = \exp(-\Lambda(A))
\]
Back to maxima

How to express A in

$$\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = \exp(-\Lambda(A))$$
Back to maxima

How to express A in

$$\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = \exp(-\Lambda(A))$$

Changing coordinates: $r = u + v$ and $w = u/(u + v)$

$$(u, v) \notin A \Leftrightarrow u < x \text{ and } v < y,$$

$$(r < x/w \text{ and } r < y/(1 - w),$$

$$(r < \min(x/w, y/(1 - w))$$
Back to maxima

How to express A in

$$\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = \exp(-\Lambda(A))$$

Changing coordinates: $r = u + v$ and $w = u/(u + v)$

$$(u, v) \notin A \Leftrightarrow u < x \text{ and } v < y,$$
$$\Leftrightarrow r < x/w \text{ and } r < y/(1 - w),$$
$$\Leftrightarrow r < \min(x/w, y/(1 - w))$$

Computing $\Lambda(A)$

$$\Lambda(A) = \int_{w \in [0,1]} \int_{r > \min(x/w, y/(1-w))} r^{-2} dH(w)$$
$$= \int_{w \in [0,1]} \max(w/x, (1 - w)/y) dH(w)$$
Rewriting the counting rate in function of $H(dw)$

$\Lambda(A) = \int_0^1 \max \left(\frac{w}{x}, \frac{1-w}{y} \right) H(dw)$

Scaling property checked

$\Lambda(tA) = t^{-1} \Lambda(tA)$
Max-stable vector

If

\[\lim_{n \to \infty} P(\max(X_1, \ldots, X_n)/a_n \leq x, \max(Y_1, \ldots, Y_n)/a_n \leq y) = G(x, y) \]

then

\[-\log G(x, y) = \int_0^1 \max \left(\frac{w}{x}, \frac{1 - w}{y} \right) dH(w) \]

where \(H(.) \) such that \(\int_0^1 w dH(w) = 1 \)
Max-stable vector properties

\[G(x, y) = \exp \left[- \int_0^1 \max \left(\frac{w}{x}, \frac{1-w}{y} \right) dH(w) \right] \]

and \(H(.) \) such that \(\int_0^1 w \, dH(w) = 1 \)

Max-stability

\[G^t(tx, ty) = G(x, y), \text{ for any } t > 0 \]

Marginals: unit-Fréchet

\[G(x, \infty) = G(\infty, x) = \exp(-1/x) \]
A multivariate summary

Maxima

- Max-stability
 \[G^t(tz) = G(z) \]

-Tail behavior

- High quantiles

- Regularly varying

Counting exceedances

- Scaling property
 \[\Lambda(tAz) = t^{-1} \Lambda(Az) \]

Motivation Basics MRV Max-stable MEV PAM MOM BHM Spectral
Recipe for Disaster: The Formula That Killed Wall Street

By Felix Salmon 02.23.09

$\Pr[T_{A} < 1, T_{B} < 1] = \Phi_{2}(\Phi^{-1}(F_{A}(1)), \Phi^{-1}(F_{B}(1)), \gamma)$

Here's what killed your 401(k) David X. Li's Gaussian copula function as first published in 2000. Investors exploited it as a quick—and fatally flawed—way to assess risk. A shorter version appears on this month's cover of Wired.
A quick summary about the basics

Learned lessons

■ Multivariate maxima can be handled with Poisson counting processes
■ “Polar coordinates” allows to see the independence between the strength of the event and the dependence structure that lives on the simplex
■ The dependence structure has not explicit expressions (in contrast to the margins and to the Gaussian case)
■ Max-stable property = scaling property for the Poisson intensity
■ Conceptually easy to go from the bivariate to the multivariate case
Remaining questions

- How to make the inference of the dependence structure?
- How can we use this dependence structure?
- No easy regression scheme (how to do D&A, see Francis’ talk)?
Inference

Strategies for either the marginal behavior or the dependence

- Parametric: (+) Reduce dimensionality & easy to deal with covariates (-) impose a parametric form, model selection needed
- Non-parametric: (+) General without strong assumptions, (-) no practical for large dimension (curse of dimensionality), difficult to insert covariates
Inference

Strategies for either the marginal behavior or the dependence

- Parametric: (+) Reduce dimensionality & easy to deal with covariates (-) impose a parametric form, model selection needed
- Non-parametric: (+) General without strong assumptions, (-) no practical for large dimension (curse of dimensionality), difficult to insert covariates

Techniques

- Maximizing the likelihood: (+) easy to integrate covariates (-) impose a parametric form, no straightforward for large dimension
- Bayesian inference: (+) easy to insert expert knowledge, (-) no straightforward for large dimension (slow)
- Methods of moments: (+) fast and simple to understand, can be non-parametric (-) no straightforward to have covariates
Hourly precipitation in France, 1992-2011 (Olivier Mestre)
Our game plan to handle extremes from this big rainfall dataset

<table>
<thead>
<tr>
<th>Spatial scale</th>
<th>Large (country)</th>
<th>Local (region)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem</td>
<td>Dimension reduction</td>
<td>Spectral density in moderate dimension</td>
</tr>
<tr>
<td>Data</td>
<td>Weekly maxima of hourly precipitation</td>
<td>Heavy hourly rainfall excesses</td>
</tr>
<tr>
<td>Method</td>
<td>Clustering algorithms for maxima</td>
<td>Mixture of Dirichlet</td>
</tr>
</tbody>
</table>

Without imposing a given parametric structure
Clustering of maxima (joint work with E. Bernard, M. Vrac and O. Mestre)

Task 1
Clustering 92 grid points into around 10-20 climatologically homogeneous groups wrt spatial dependence
Clusterings

Challenges

- Comparing apples and oranges
- An average of maxima (centroid of a cluster) is not a maximum
- Variances have to be finite
- Difficult interpretation of clusters

Questions

- How to find an appropriate metric for maxima?
- How to create cluster centroids that are maxima?
A central question (assuming that $\mathbb{P}[M(x) < v] = \mathbb{P}[M(y) < u] = \exp(-1/u)$)
\(\theta = \text{Extremal coefficient} \)

\[
P [M(x) < u, M(y) < u] = (P [M(x) < u])^\theta
\]

Interpretation

- Independence \(\Rightarrow \theta = 2 \)
- \(M(x) = M(y) \Rightarrow \theta = 1 \)
- Similar to correlation coefficients for Gaussian but ...
- No characterization of the **full** bivariate dependence
A L1 marginal free distance (Cooley, Poncet and N., 2005, N. and al., 2007)

\[d(x, y) = \frac{1}{2} \mathbb{E} \left| F_y(M(y)) - F_x(M(x)) \right| \]
A L1 marginal free distance (Cooley, Poncet and N., 2005, N. and al., 2007)

\[d(x, y) = \frac{1}{2} \mathbb{E} |F_y(M(y)) - F_x(M(x))| \]

If \(M(x) \) and \(M(y) \) bivariate GEV, then

\[
\text{extremal coefficient} = \frac{1 + 2d(x, y)}{1 - 2d(x, y)}
\]
Clusterings

Questions

- How to find an appropriate metric for maxima?
- How to create cluster centroids that are maxima?
Partitioning Around Medoids (PAM) (Kaufman, L. and Rousseeuw, P.J. (1987))
PAM: Choose K initial mediods
PAM: Assign each point to each closest mediod
PAM: Recompute each mediod as the gravity center of each cluster
PAM: continue if a mediiod has been moved
PAM: Assign each point to each closest mediod
PAM: Recompute each mediod as the gravity center of each cluster
• Clustering validation

SILHOUETTE COEFFICIENT

\[s_i = \frac{b_i - a_i}{\max(a_i, b_i)} \]

- \(a_i \ll b_i, \quad s_i \approx 1 \) → Well classified
- \(a_i \sim b_i, \quad s_i \approx 0 \) → Neutral
- \(a_i \gg b_i, \quad s_i \approx -1 \) → Badly classified
Silhouette width

Sil. coeff. for K= 15
Average silhouette width : 0.09
median

PAM with K= 15

Longitudes

Latitudes

Fall
PAM with $K = 15$
Applying the kmeans algorithm to maxima (15 clusters)
Summary on clustering of maxima

- Classical clustering algorithms (kmeans) are not in compliance with EVT
- Madogram provides a convenient distance that is marginal free and very fast to compute
- PAM applied with mado preserves maxima and gives interpretable results
- R package available on my web site
Project: Dimension reduction (via clustering?)

- Are clusters of maxima change over time, say pre-industrial, today, future?
- How robust are clusters of maxima in climate models (is it model sensitive)?
- Are clusters of maxima different from classical patterns (EOF)?
- PAM applied with mado preserves maxima and gives interpretable results
- Can we compute the FAR within a given cluster?
- What about the marginal behavior (the intensity)?

Data = field of temperature yearly maxima or precipitation (per season?)
A fast, simple, and flexible method based on probability weighted moments and kernel regression has been proposed to model covariate-dependent extremes. It is computationally inexpensive and can be applied to very large data sets. It does not assume any a priori behavior of the scale parameter, but it assumes a constant shape parameter. We tested our approach on simulations and heavy precipitation in Switzerland. The Swiss case study highlights the applicability of the method and its potentiality. Our results are coherent with recent studies. Finally, the method is freely available as an R package that can be requested by email.

Figure 4. Inferred 50 year return levels in mm for heavy precipitation in Switzerland, see Figure 3.
Methods of moments in a non-stationary spatial case4

Probability Weighted Moments (PWM), see Hoskings and colleagues

\[\mu_r = \mathbb{E}\left[Z G^r(Z) \right] \]

4 Naveau, Toreti, Smith, Xoplaki, WRR, 2014
Methods of moments in a non-stationary spatial case

Probability Weighted Moments (PWM), see Hoskings and colleagues

\[\mu_r = \mathbb{E}[Z^r] \]

PWM for the GPD in the IID case

\[\mu_r = \frac{\sigma}{(1 + r)(1 + r - \xi)} \]

4. Naveau, Toreti, Smith, Xoplaki, WRR, 2014
Methods of moments in a non-stationary spatial case

Probability Weighted Moments (PWM), see Hoskings and colleagues

$$\mu_r = \mathbb{E}\left[Z \bar{G}^r(Z)\right]$$

PWM for the GPD in the IID case

$$\mu_r = \frac{\sigma}{(1 + r)(1 + r - \xi)},$$

PWM and GPD parameters for $\xi < 1.5$

$$\sigma = \frac{2.5\mu_{1.5}\mu_1}{2\mu_1 - 2.5\mu_{1.5}} \quad \text{and} \quad \xi = \frac{4\mu_1 - (2.5)^2\mu_{1.5}}{2\mu_1 - 2.5\mu_{1.5}}.$$

An estimation of μ_r can be obtained by noticing that $\bar{G}_{\sigma,\xi}(Z)$ follows a uniform distribution on $[0, 1]$.

4. Naveau, Toreti, Smith, Xoplaki, WRR, 2014
Methods of moments in a non-stationary spatial case

Non-stationary case with $Y(x)$ followed a $\text{GP}(\sigma(x), \xi)$

Now $\sigma(x)$ can vary according to a covariate x,

$$\mu_r(x) = \mathbb{E}[Y(x)\overline{G}_{\sigma(x),\xi}(Y(x))],$$
Methods of moments in a non-stationary spatial case

Non-stationary case with $Y(x)$ **followed a GP($\sigma(x), \xi$)**

Now $\sigma(x)$ can vary according to a covariate x,

$$\mu_r(x) = \mathbb{E}[Y(x)G_{\sigma(x),\xi}(Y(x))],$$

A simple rewriting

$$\mu_r(x) = \sigma(x) \frac{1}{(1 + r)(1 + r - \xi)} = \sigma(x)\mathbb{E}[ZG_{1,\xi}(Z)],$$

where Z follows GP($1, \xi$) distribution.
Methods of moments in a non-stationary spatial case

Non-stationary case with $Y(x)$ followed a GP($\sigma(x), \xi$)

Now $\sigma(x)$ can vary according to a covariate x,

$$\mu_r(x) = \mathbb{E}[Y(x)\overline{G}_{\sigma(x), \xi}(Y(x))],$$

A simple rewriting

$$\mu_r(x) = \sigma(x)\frac{1}{(1 + r)(1 + r - \xi)} = \sigma(x)\mathbb{E}[Z\overline{G}_{1, \xi}^r(Z)],$$

where Z follows GP($1, \xi$) distribution.

A new system

$$\xi = \frac{(1 + s)^2 - (1 + r)^2\alpha_{rs}}{(1 + s) - (1 + r)\alpha_{rs}} \quad \text{and} \quad \sigma(x) = \mu_0(x)(1 - \xi),$$

with

$$\alpha_{rs} = \frac{\mathbb{E}[Z\overline{G}_{1, \xi}^r(Z)]}{\mathbb{E}[Z\overline{G}_{1, \xi}^s(Z)]}.$$

The only variables depending on x are $\sigma(x)$ and $\mu_0(x)$.
Methods of moments in a non-stationary spatial case

Non-stationary case with $Y(x)$ followed a $\text{GP}(\sigma(x), \xi)$

Suppose that $\hat{\mu}_0(x)$ and $\hat{\alpha}$ represent any estimators for $\mu_0(x)$ and α_{rs},

$$\hat{\xi} = \frac{9 - 4\hat{\alpha}}{3 - 2\hat{\alpha}} \quad \text{and} \quad \hat{\sigma}(x) = \hat{\mu}_0(x)(1 - \hat{\xi})$$
Methods of moments in a non-stationary spatial case

Non-stationary case with \(Y(x) \) followed a \(\text{GP}(\sigma(x), \xi) \)

Suppose that \(\hat{\mu}_0(x) \) and \(\hat{\alpha} \) represent any estimators for \(\mu_0(x) \) and \(\alpha_{rs} \),

\[
\hat{\xi} = \frac{9 - 4\hat{\alpha}}{3 - 2\hat{\alpha}} \quad \text{and} \quad \hat{\sigma}(x) = \hat{\mu}_0(x)(1 - \hat{\xi})
\]

A kernel regression approach for \(\hat{\mu}_0(x) \)

Let \(K \) be a weighting Kernel, e.g. a standard Gaussian pdf, we set

\[
\hat{\mu}_0(x) = \frac{1}{\sum_i K(x - x_i)} \sum_{i=1}^{n} Y(x_i) K(x - x_i).
\]
Methods of moments in a non-stationary spatial case

Non-stationary case with $Y(x)$ followed a GP($\sigma(x), \xi$)
Suppose that $\hat{\mu}_0(x)$ and $\hat{\alpha}$ represent any estimators for $\mu_0(x)$ and α_{rs},

$$\hat{\xi} = \frac{9 - 4\hat{\alpha}}{3 - 2\hat{\alpha}} \quad \text{and} \quad \hat{\sigma}(x) = \hat{\mu}_0(x)(1 - \hat{\xi})$$

A kernel regression approach for $\hat{\mu}_0(x)$
Let K be a weighting Kernel, e.g. a standard Gaussian pdf, we set

$$\hat{\mu}_0(x) = \frac{1}{\sum_i K(x - x_i)} \sum_{i=1}^n Y(x_i) K(x - x_i).$$

Estimation of α_{rs}
Replace the unobserved Z_i’s by their estimated renormalized version $Z_i' = Y(x_i)/\hat{\mu}_0(x_i)$. Then, simply use your favorite inference PWM methods to estimate $\mathbb{E}[Z'G'_{1,\xi}(Z')]$ for $r = 1, 2$.

Simulations

Figure 1. For a $GPD(\sigma(x), \xi)$, the solid black line represents the true scale parameter $\sigma(x)$ in function of x (x axis). The shape parameter is constant and equals to 0.2 (right axis). From one realization, the boxplot and the gray 90% confidence intervals represent the estimated shape and scale (left axis) obtained by resampling, respectively.
Simulations

Figure 2. Estimated shape parameter (y axis) from 1000 replicas (x axis) based on the setup described in Figure 1. The vertical red lines correspond to the samples outside of the estimated 90% coverage probability. As expected for 1000 replicas, around 100 false positive (red lines) occurrences are detected.
Daily precipitation recorded in Switzerland 2001-2010 Autumn ($u = 90^{th}$)

Figure 3. Inferred scale parameter obtained from heavy precipitation (i.e., threshold at the 90% quantile of wet days) recorded at 220 stations in Switzerland from 2001 to 2010 in autumn. The top, middle, and bottom rows correspond to the 5%, median, and 95% values, respectively. The columns from the left represent three different bandwidths, 0.3, 0.5, and 0.7, respectively.
Heavy rainfall in Switzerland

Pros and cons about the inference

- Parametric structure with a GPD: (+) Reduce dimensionality & easy to deal with covariates (-) impose a parametric form, model selection needed
- Non-parametric for the scale parameter
- (+) Fast and conceptually easy (method of moments)
- (-) Independent assumption
- (-/+ Constant shape parameter
Bayesian inference with hidden structures

Notations
- Model = statistical model
- Data \(y = (y_1, \ldots, y_n) \)
- Hidden signal \(x = (x_1, \ldots, x_n) \)

Problems at hand
- Model \([y|x]\), the likelihood distribution
- Choose \([x]\) the prior
- Model \([x_t|x_{t-1}]\), the dynamical part of the unobserved system
- Find \([x|y]\) the inverse probability (posterior)
A classical and old problem

The problem
- **Find** \([x|y] \) **the inverse probability (posterior)**

Different names
- Statistical data assimilation
- Statistical inverse problem
- Latent variables
- Filtering methods (Kalman, particles, etc)
- State-space modeling
- Bayesian hierarchical model
- Mixed models
Pierre Simon Laplace (1749-1827)

“L’analyse des probabilités assigne la probabilité de ces causes, et elle indique les moyens d’accroître de plus en plus cette probabilité.”

“Essai Philosophiques sur les probabilités” (1774)
Pierre Simon Laplace (1749-1827)

“If an event can be produced by a number of \(n \) different causes, then the probabilities of the causes given the event ... are equal to the probability of the event given that cause, divided by the sum of all the probabilities of the event given each of the causes.”

\[
P(\text{cause}_i | \text{event}) = \frac{P(\text{event} | \text{cause}_i) \times P(\text{cause}_i)}{\sum_{j=1}^{n} P(\text{event} | \text{cause}_j) \times P(\text{cause}_j)}
\]
Bayes’ formula = calculating conditional probability

\[x | y \propto y | x \times x \]

1701(?) - 1761 “An essay towards solving a Problem in the Doctrine of Chances” (1764)
Bayesian vs frequentist statistics

\[[x|y] \propto [y|x] \times [x] \]

Frequentist statistics
- Trust your data and your model
- Find estimators of \([x|y]\) by maximizing the likelihood \([y|x]\) (if necessary, penalize it with prior \([x]\))

Bayesian statistics
- Find and trust expert information (independent of our data) through prior \([x]\)
- Trust your data and your model
- Update your expert information via the data, i.e. find posterior \([x|y]\) by using \([x|y] \propto [y|x][x]\)
Statistics and Earth sciences

“There is, today, always a risk that specialists in two subjects, using languages full of words that are unintelligible without study, will grow up not only, without knowledge of each other’s work, but also will ignore the problems which require mutual assistance”.

QUIZ

- (A) Gilbert Walker
- (B) Ed Lorenz
- (C) Rol Madden
- (D) Francis Zwiers
“There is, today, always a risk that specialists in two subjects, using languages full of words that are unintelligible without study, will grow up not only, without knowledge of each other’s work, but also will ignore the problems which require mutual assistance”.

QUIZ

■ (A) Gilbert Walker
■ (B) Ed Lorenz
■ (C) Rol Madden
■ (D) Francis Zwiers
Bayesian approach

\[x \mid y \propto y \mid x \times x \]

Advantages
- Integration of expert information via prior \([x]\)
- Deals with the full distribution
- Non-Gaussian
- Non-linear

Drawbacks
- Integration of expert information via prior \([x]\)
- Complex algorithmic techniques (MCMC, particle-filtering)
- Can be slow and not adapted for large data sets
Daily precipitation (April-October, 1948-2001, 56 stations)
Precipitation in Colorado’s front range

Data

- 56 weather stations in Colorado (semi-arid and mountainous region)
- Daily precipitation for the months April-October
- Time span = 1948-2001
- Not all stations have the same number of data points
- Precision: 1971 from 1/10th of an inche to 1/100

Thresholding : the Generalized Pareto Distribution (GPD)

\[
\mathbb{P}\{ \mathbf{R} - u > y | \mathbf{R} > u \} = \left(1 + \frac{\xi y}{\sigma_u} \right)^{-1/\xi}
\]

Born in France and trained as an engineer in Italy, he turned to the social sciences and ended his career in Switzerland. He formulated the power-law distribution (or "Pareto’s Law"), as a model for how income or wealth is distributed across society.
Our main assumptions

- **Process layer**: The scale and shape GPD parameters \((\xi(x), \sigma(x))\) are random fields and result from an unobservable latent spatial process.
- **Conditional independence**: Precipitation are independent given the GPD parameters.

Our main variable change

\[\sigma(x) = \exp(\phi(x)) \]
Hierarchical Bayesian Model with three levels

\[P(\text{process, parameters}|\text{data}) \propto P(\text{data}|\text{process, parameters}) \times P(\text{process}|\text{parameters}) \times P(\text{parameters}) \]

Process level: the scale and shape GPD parameters \((\xi(x), \sigma(x))\) are hidden random fields
Our three levels

A) **Data layer** := $\mathbb{P}(\text{data}|\text{process, parameters}) =$

$$
\mathbb{P}_\theta \{ R(x_i) - u > y | R(x_i) > u \} = \left(1 + \frac{\xi_i \ y}{\exp \phi_i} \right)^{-1/\xi_i}
$$

B) **Process layer** := $\mathbb{P}(\text{process}|\text{parameters}) :$

e.g. $\phi_i = \alpha_0 + \alpha_1 \times \text{elevation}_i + \text{Gaussian} \ (0, \beta_0 \ \exp(-\beta_1 ||x_k - x_j||))$

and $\xi_i = \begin{cases}
\xi_{\text{mountains}}, & \text{if } x_i \in \text{mountains} \\
\xi_{\text{plains}}, & \text{if } x_i \in \text{plains}
\end{cases}$

C) **Parameters layer (priors)** := $\mathbb{P}(\text{parameters}) :$

e.g. $(\xi_{\text{mountains}}, \xi_{\text{plains}})$ Gaussian distribution with non-informative mean and variance
Bayesian hierarchical modeling

\[\begin{align*}
\sigma & \xrightarrow{\text{Priors}} \alpha_0 + \alpha_1 \text{ elev} \\
& \downarrow \\
\xi & \xrightarrow{\text{Priors}} \xi_{\text{moutains}} \\
\xi & \xrightarrow{\text{Priors}} \beta_0 \exp(-\beta_1 \cdot \cdot) \\
& \uparrow \\
P(R(x) > u) & \xrightarrow{\text{Priors}} \xi_{\text{plains}} \\
& \downarrow \\
\text{Priors} & \xrightarrow{\text{Priors}} \text{Priors}
\end{align*} \]
foothill cities (C), plains (P), Palmer Divide (D), Front Range (F), mountain valley (V), and high elevation (H)
Priors for the spatial component

Traditional Space (a) & Climate Space (b). The dashed lines denote the envelope of possible variograms given the sill and range priors.
Model selection

<table>
<thead>
<tr>
<th>Baseline model</th>
<th>\hat{D}</th>
<th>p_D</th>
<th>DIC</th>
</tr>
</thead>
</table>
| Model 0: $\phi = \phi$
$\xi = \xi$ | 73,595.5 | 2.0 | 73,597.2 |

<table>
<thead>
<tr>
<th>Models in latitude/longitude space</th>
<th>\hat{D}</th>
<th>p_D</th>
<th>DIC</th>
</tr>
</thead>
</table>
| Model 1: $\phi = \alpha_0 + \epsilon_\phi$
$\xi = \xi$ | 73,442.0 | 40.9 | 73,482.9 |
| Model 2: $\phi = \alpha_0 + \alpha_1(\text{msp}) + \epsilon_\phi$
$\xi = \xi$ | 73,441.6 | 40.8 | 73,482.4 |
| Model 3: $\phi = \alpha_0 + \alpha_1(\text{elev}) + \epsilon_\phi$
$\xi = \xi$ | 73,443.0 | 35.5 | 73,478.5 |
| Model 4: $\phi = \alpha_0 + \alpha_1(\text{elev}) + \alpha_2(\text{msp}) + \epsilon_\phi$
$\xi = \xi$ | 73,443.7 | 35.0 | 73,478.6 |

<table>
<thead>
<tr>
<th>Models in climate space</th>
<th>\hat{D}</th>
<th>p_D</th>
<th>DIC</th>
</tr>
</thead>
</table>
| Model 5: $\phi = \alpha_0 + \epsilon_\phi$
$\xi = \xi$ | 73,437.1 | 30.4 | 73,467.5 |
| Model 6: $\phi = \alpha_0 + \alpha_1(\text{elev}) + \epsilon_\phi$
$\xi = \xi$ | 73,438.8 | 28.3 | 73,467.1 |
| Model 7: $\phi = \alpha_0 + \epsilon_\phi$
$\xi = \xi_{\text{mtn}}, \xi_{\text{plains}}$ | 73,437.5 | 28.8 | 73,466.3 |
| Model 8: $\phi = \alpha_0 + \alpha_1(\text{elev}) + \epsilon_\phi$
$\xi = \xi_{\text{mtn}}, \xi_{\text{plains}}$ | 73,436.7 | 30.3 | 73,467.0 |
| Model 9: $\phi = \alpha_0 + \epsilon_\phi$
$\xi = \xi + \epsilon_\xi$ | 73,433.9 | 54.6 | 73,488.5 |

NOTE: Models in the climate space had better scores than models in the longitude/latitude space. $\epsilon \sim \text{MVN}(0, \Sigma)$, where $[\sigma]_{ij} = \beta_{0i} \exp(-\beta_{1i} ||\mathbf{x}_i - \mathbf{x}_j||)$.

Return levels posterior mean
Posterior quantiles of return levels (.025, .975)
Take-home messages for this rainfall application

Positive points
- Take advantage of Extreme Value Theory
- Spatial dependencies are captured within the process layer
- The hierarchical Bayesian framework provides a rich and flexible family for modeling complex data sets

Drawbacks
- Computer-intensive implementation (MCMC)
- Difficulty to set the “spatial” priors
- Conditional independence of the observations
Hourly precipitation in France, 1992-2011 (Olivier Mestre)
Our game plan to handle extremes from this big rainfall dataset

<table>
<thead>
<tr>
<th>Spatial scale</th>
<th>Large (country)</th>
<th>Local (region)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem</td>
<td>Dimension reduction</td>
<td>Spectral density in moderate dimension</td>
</tr>
<tr>
<td>Data</td>
<td>Weekly maxima of hourly precipitation</td>
<td>Heavy hourly rainfall excesses</td>
</tr>
<tr>
<td>Method</td>
<td>Clustering algorithms for maxima</td>
<td>Mixture of Dirichlet</td>
</tr>
</tbody>
</table>

Without imposing a given parametric structure
Our game plan to handle extremes from this rainfall dataset

<table>
<thead>
<tr>
<th>Spatial scale</th>
<th>Large (country)</th>
<th>Local (region)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem</td>
<td>Dimension reduction</td>
<td>Spectral density in moderate dimension</td>
</tr>
<tr>
<td>Data</td>
<td>Weekly maxima of hourly precipitation</td>
<td>Heavy hourly rainfall excesses</td>
</tr>
<tr>
<td>Method</td>
<td>Clustering algorithms for maxima</td>
<td>Mixture of Dirichlet</td>
</tr>
</tbody>
</table>
Back to the cluster
Bayesian Dirichlet mixture model for multivariate excesses (joint work with A. Sabourin)

Meteo-France data
Wet hourly events at the regional scale (temporally declustered) of moderate dimensions (from 2 to 8)

Task 2
Assessing the dependence among rainfall excesses
Multivariate Extreme Value Theory (de Haan, Resnick and others)

Maxima

Max-stability

\[G^t(tz) = G(z) \]

Regularly varying

Tail behavior

High quantiles

Scaling property

\[\Lambda(tAz) = t^{-1} \Lambda(Az) \]

Counting exceedances
Defining radius and angular points

Example with $d = 3$ and $X = (X_1, X_2, X_3)$ such that $P(X_i < x) = e^{-\frac{1}{x}}$

Simplex $S_3 = \{w = (w_1, w_2, w_3) : \sum_{i=1}^{3} w_i = 1, w_i \geq 0\}$.
Mathematical constraints on the distribution of the angular points H

$$P(W \in B, R > r) \sim \frac{1}{r} H(B)$$

Features of H

- H can be non-parametric
- The gravity center of H has to be centered on the simplex

$$\forall i \in \{1, \ldots, d\}, \int_{S_d} w_i \, dH(w) = \frac{1}{d}$$
A few references on Bayesian non-parametric and semi-parametric spectral inference

- M.-O. Boldi and A. C. Davison.
 A mixture model for multivariate extremes.

- S. Guillotte, F. Perron, and J. Segers.
 Non-parametric bayesian inference on bivariate extremes.
 JRSS : Series B (Statistical Methodology), 2011.

- A. Sabourin and P. Naveau.
 Bayesian Drichlet mixture model for multivariate extremes.
 CSDA, 2013, in press.

- P.J. Green.
 Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

- Roberts, G.O. and Rosenthal, J.S.
 Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains
Dirichlet distribution

\[\forall \mathbf{w} \in \mathbb{S}_d, \; \text{diri}(\mathbf{w} | \mu, \nu) = \frac{\Gamma(\nu)}{\prod_{i=1}^{d} \Gamma(\nu \mu_i)} \prod_{i=1}^{d} w_i^{\nu \mu_i - 1}. \]

\[\mu = (1/3, 1/3, 1/3) \text{ and } \nu = 9 \]
Dirichlet distribution

\[\forall \mathbf{w} \in \mathcal{S}_d, \text{diri}(\mathbf{w} \mid \mu, \nu) = \frac{\Gamma(\nu)}{\prod_{i=1}^{d} \Gamma(\nu_{\mu_i})} \prod_{i=1}^{d} \mathbf{w}_i^{\nu_{\mu_i}-1}. \]

\[\mu = (1/3, 1/3, 1/3) \text{ and } \nu = 9 \]
Dirichlet distribution

\[\forall \mathbf{w} \in \mathcal{S}_d, \text{diri}(\mathbf{w} \mid \boldsymbol{\mu}, \nu) = \frac{\Gamma(\nu)}{\prod_{i=1}^{d} \Gamma(\nu_{\mu_i})} \prod_{i=1}^{d} w_i^{\nu_{\mu_i} - 1}. \]

\[\boldsymbol{\mu} = (0.15, 0.35, 0.05) \text{ and } \nu = 9 \]

But this one is not centered!!
Mixture of Dirichlet distribution

Boldi and Davision, 2007

\[h(\mu, p, \nu)(w) = \sum_{m=1}^{k} p_m \text{diri}(w | \mu_m, \nu_m) \]

with \(\mu = \mu_{1:k}, \nu = \nu_{1:k}, p = p_{1:k} \)
Mixture of Dirichlet distribution

Boldi and Davision, 2007

\[h(\mathbf{\mu}, \mathbf{p}, \mathbf{\nu})(\mathbf{w}) = \sum_{m=1}^{k} p_m \text{diri}(\mathbf{w} | \mathbf{\mu}_m, \mathbf{\nu}_m) \]

with \(\mathbf{\mu} = \mathbf{\mu}_{1:k}, \mathbf{\nu} = \mathbf{\nu}_{1:k}, \mathbf{p} = \mathbf{p}_{1:k} \)

Constraint on \((\mathbf{\mu}, \mathbf{p}) \)

\[p_1 \mathbf{\mu}_{1:1} + \ldots + p_k \mathbf{\mu}_{1:k} = (\frac{1}{d}, \ldots, \frac{1}{d}) \]
Inference of Dirichlet density mixtures

Boldi and Davison (2007)

Prior of $[\mu | p]$ defined on the set

$$p_1 \mu_{.,1} + \cdots + p_k \mu_{.,k} = \left(\frac{1}{d}, \ldots, \frac{1}{d} \right)$$

- Sequential inference: first p, then μ one coordinate after the other
- Skewed, not interpretable, slow sampling
- Difficult inference in dimension > 3
Inference of Dirichlet density mixtures

How to build priors for \((p, \mu)\) such that

\[
p_1 \mu_{:,1} + \cdots + p_k \mu_{:,k} = \left(\frac{1}{d}, \ldots, \frac{1}{d} \right)
\]
Unconstrained Bayesian modeling for
\(\Theta = \prod_{k=1}^{\infty} \Theta_k; \quad \Theta_k = \{(S_d)^{k-1} \times [0, 1)^{k-1} \times (0, \infty)^{k-1}\} \)

Prior

\(k \sim \text{Truncated geometric} \)
\(\mu_{.,m}|(\mu_{.,1:m-1}, \epsilon_{1:m-1}) \sim \text{Dirichlet} \)
\(\epsilon_{m}|(\mu_{.,1:m}, \epsilon_{1:m-1}) \sim \text{Beta} \)
\(\nu_m \sim \text{logN} \)

Posterior sampling: MCMC reversible jumps
Summary of the Bayesian scheme
Summary of the Bayesian schemes

Boldi and Davison (2012)

Figure 5: Convergence monitoring with five-dimensional data in the original DM model (left panel) and in the re-parametrized version (right panel), with four parallel chains in each model. Grey lines: Evolution of \(g, h_{\theta(j)}\). Black, solid lines: cumulative mean. Dashed line: true value.
Simulation example with \(d = 5 \) and \(k = 3 \)

\[T_2 = 150 \times 10^3, \quad T_1 = 50 \times 10^3. \]
Back to our excesses of the “Lyon” cluster

Stations 68, 70, 1
Coming back to Leeds

Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10 (center), and SO2 vs. NO (right) (Heffernan & Tawn 2004, Boldi & Davison, 2007)
Fig. 6. Five dimensional Leeds data set: posterior predictive density. Black lines: projections of the predictive angular density defined on the four-dimensional simplex S_5 onto the two-dimensional faces. Gray dots: projections of the 100 points with greatest L^1 norm.
Take home messages

Conclusions

- Clustering of weekly maxima with PAM is fast and gives spatially coherent structures
- Bayesian semi-parametric mixture can handle moderate dimensions and provide credibility intervals

Going further

- Anne Sabourin = a Bayesian semi-parametric mixture for censored data with an application to paleo-flood data

References

Silhouette coefficients for different K
Different results from different Monte Carlo chains?

Stations 68, 70, 42
Simulation example with $d = 3$ and $k = 3$

Simulated points with true density

Predictive density
The scale and shape GEV parameters
Take home messages from part I

- Extremes here means very rare
- It is possible to estimate the dependence between bivariate extremes
- Multivariate EVT may help characterizing extremes dependencies in space or time
- Modeling trade off between parametric and non-parametric approaches
- Challenges to go beyond the bivariate case and to have flexible parametric models
New parametrisation

Ex: $k = 4$ and $d = 3$

γ_m : "Equilibrium" centers built from $\mu_{,m+1}, \cdots, \mu_{,k}$.

$$\gamma_m = \sum_{j=m+1}^{k} \frac{p_j}{p_{m+1} + \cdots + p_k} \mu_{,j}$$
New parametrisation

Ex: $k = 4$ and $d = 3$

\[\mu_{-1}, e_1 \Rightarrow \gamma_1 : \frac{\gamma_0 \gamma_1}{\gamma_0 l_1} = e_1 ; \]

\[\Rightarrow p_1 \]
New parametrisation

Ex: $k = 4$ and $d = 3$

\[\mu_{1,2}, e_2 \Rightarrow \gamma_2 : \frac{\gamma_1 \gamma_2}{\gamma_1 l_2} = e_2 ; \]

\[\Rightarrow p_2 \]
New parametrisation

Ex: $k = 4$ and $d = 3$

\[
\mu_{.,3}, e_3 \Rightarrow \gamma_3 : \frac{\gamma_2 \gamma_3}{\gamma_2 I_3} = e_3 ; \quad \mu_{.,4} = \gamma_3.
\Rightarrow \rho_3, \rho_4
\]
New parametrisation

Ex: $k = 4$ and $d = 3$

Parametrisation of h with $\theta = (\mu_{.,1:k-1}, e_{1:k-1}, \nu_{1:k})$

$(\mu_{.,1:k-1}, e_{1:k-1})$ gives $(\mu_{.,1:k}, p_{1:k})$