WGSIP Risk of Extremes Project

```
Leads: Doug Smith (Met Office Hadley Centre), Hong- Li Ren (China Meteorological Administration)
Additional participants: Asmerom Beraki (CSIR, South Africa), Bill Merryfield (Canadian Centre for Climate
Modelling and Analysis), Yvan Orsolini (NILU, Norway), Ramiro Saurral (CIMA, Universidad de Buenos Aires,
Argentina), Yuhei Takaya (Meteorological Research Institute, Japan), Mikhail Tolstykh (Russian Academy of
Sciences, Russia)
Expected outcomes:
- a series of case studies applying the UNSEEN methodology to a variety of phenomena and regions,
potentially including compound events
- assessment of current capability of climate models to predict extreme events
```


S2S predictability of the AO

Skill is higher for strong AO cases

(c) ECCC (1998-2017)

(g) JMA (1981-2012)

(d) ECMWF (1998-2016)

(h) KMA (1991-2010)

-_ Normal AO

- Strong negative $A O$
-_ Strong positive AO
- Strong negative AO p <0.05
- Strong positive AO p <0.05

S2S predictability of the AO

Correlation skill improved for strong negative AO cases

(o) HMCR/Normal AO

(a) ISAC-CNR/Strong negative $A O$

(c) ISAC-CNR/Normal AO

(d) JMA/Strong negative $A O$

(f) JMA/Normal AO

$\begin{array}{lllllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9\end{array}$
Underlying atmospheric dynamics are also discussed in Minami and Takaya (2020).

Recent research on predicting extremes (BoM)

Extreme rainfall that caused the north-eastern Australia floods in February 2019
Led to the deaths of $\sim 625,000$ cattle and $\sim 48,000$ sheep, infrastructure damage and flooding of >3000 homes

Forecast from ECMWF-SEAS5

In collaborative S2S paper: Domeisen et al "Advances in the subseasonal prediction of extreme events" (To be submitted to BAMS)

Other extremes research:

Cowan et al, https://doi.org/10.1016/i.wace.2019.100232 Forecasting the extreme rainfall, low temperatures, and strong winds associated with the northern Queensland floods of February 2019
King et al, QJRMS https://doi.org/10.1002/aj. 3789 Sub-seasonal to seasonal prediction of rainfall extremes in Australia
Lim et al, Nature Geoscience https://doi.org/10.1038/s41561-019-0456-x Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex Wang and Hendon, Clim Dyn. https://doi.org/10.1007/s00382-020-05432-x_Impacts of the Madden-Julian Oscillation on wintertime Australian minimum temperatures and Southern Hemisphere circulation

A Flow-Dependent Approach to Process-based Model Diagnostics

- Can we build an integrated diagnostic framework based on weather type spatial patterns and frequencies of occurrence to facilitate the identification of model systematic errors across multiple timescales?

Predictability of European winter 2019/20

Decadal prediction of extreme NAO

h
i

- Extreme positive NAO decade
- Raw model forecasts underestimate the predictable signal ("signal to noise paradox")
- Scaling improves the NAO
- But impacts of the NAO still not captured
- Additional post-processing required ("NAO-matching")

[^0]
African drought

- Southern Africa moisture stress worsened since 2000 (shown by standardised precipitation index SPI)
- Models capture some of the inter annual variability (r=0.74)
- Model projections under business as usual scenario (RCP8.5) show continued decline to extreme unprecedented conditions by 2100
- Projections even more severe when water loss due to potential evapotranspiration is taken into account (Standardised Precipitation-Evapotranspiration Index SPEI).

Risk of unprecedented hot UK summer

- 11.3% chance of unprecedented event
- Strongly increasing as climate warms

- Associated with Rossby waves
- Can be driven by tropical rainfall
- Also sea ice anomalies in Barents Sea and Sea of Okhotsk

Risk of unprecedented Indian monsoon rainfall

- 1.6% (2.6\%) chance of unprecedented drought (flood)
- Drought more likely than flood due to ENSO asymmetry
- 30% drought deficit once in 2 centuries

[^0]: Smith et al 2020

