

EARTH in CMIP6

- A community ESM in different resolutions and configurations
- V3.2:
 - GCM
 - ESM with on/off
 - chemistry/aerosol
 - dynamic vegetation
 - ocean biochem
 - ice sheet

The maximum system

(not used)

Model components

- Atmosphere: IFS cy36r4,
- Ocean: NEMO 3.6
- Sea ice: LIM3 (as part of NEMO3.6)
- Atmospheric composition: TM5
- Dynamic vegetation: LPJ-GUESS
- Ocean biogeochemistry: PISCES (as part of NEMO3.6)
- Two resolutions:
 - T255L91/ORCA1 and T511L91/ORCA025

Differences CMIP5-CMIP6 Atmosphere

- CY31R1 → CY36R4
 - Updated convection scheme
 - New radiation scheme with McICA
 - New microphysics scheme with prognostic ice
 - dynamic lake temperature and ice concentration
 - Updated humidity conservation
 - Changed gravity wave drag parameterization (better QBO at resolutions other than T255)
 - Updated treatment of snow on ice sheets
 - CMIP6 forcing incl. MACv2-SP aerosol optical properties

Differences CMIP5-CMIP6 Ocean

NEMO3.6

- tri-polar grid with poles over North America, Siberia and Antarctica
- -1° (ORCA1) or 0.25° (ORCA025); 42 \rightarrow 75 vertical levels
- major changes in the TKE schemes, runoff, surface wave breaking, tidal mixing
- time discretization made energetically consistent
- partial step representation of bottom topography
- PISCES

LIM3

- multiple sea ice categories
- new thermodynamics including bulk ice salinity
- I/O management: NEMO in now interfaced with XIOS

Differences CMIP5-CMIP6 Aerosols and chemistry (TM5)

Sources/sinks

- New secondary organic aerosol scheme
- Updated particle nucleation scheme
- Revised wind speed dependence of sea spray source; online calculation of mineral dust source
- Revised scavenging efficiencies for removal of aerosols by large-scale clouds
- Updated forcing data sets to CMIP6

Aerosol properties

- Revised black carbon refractive index
- Revised carbonaceous aerosol properties
- More consistent treatment of ammonium nitrate and MSA

Processes

- Updated photolysis scheme
- Revised chemical reaction kinetics based on CB05
- Included aerosol-radiation interactions (both SW and LW)
- Included aerosol-cloud interactions (first and second indirect effects), cloud activation scheme
- Included additional diagnostics (incl. double radiation call)
- Improved performance and scalability: domain decomposition and parallel exchange of fields via OASIS-MCT

- Land surface and vegetation
 - Static → Dynamic natural vegetation, both phenology and biome distribution (LPJ-Guess)
 - -Some updated physics in HTESSEL (snow, veg. cover, desert identification, background albedo)
 - -Terrestrial carbon cycling, interactive carbon and nitrogen cycling
 - -Uses CMIP6 nitrogen deposition forcing data set
 - -N₂O emission is directly related to daily soil N mineralisation (Smith et al., 2014)
- Paleo-simulations
 - Orbital forcing
 - —Surface process of ice-sheet (land-ice mask, snow accumulation, snow albedo)
 - Model configuration tbc (likely the lowres vegetation config)

overview of your CMIP6 model

EC-Earth3-AerChem

EC-Earth 3 CC

EC-Earth 3 conc

EC-Earth 3 veg

for LUMIP and ScenarioMIP

Status

- EC-Earth version 3.2.2 (GCM) released for coupled tuning
- Tuning ongoing
- Remaining challenges
 - AMOC strength
 - Finalization of forcing implementation
 - Coupling of vegetation
- Status of ESM configurations
 - (at least) technically running
- To run CMIP6 and data issues
 - work load distribution over partners
 - Workflow, CMOR output to ESGF

Tuning

- Tuning in atmosphere-standalone mode (AMIP) for present day climate
 - reproduce the observed imbalance of the atmosphere-ocean fluxes (~0.5 W/m2) as starting point for coupled tuning.
- A long coupled present-day simulation
 - GHG forcing from one specific year, to be compared to present day obs
 - estimate the model climate sensitivity
 - verify and tune the realism of the ocean state (transport, sea ice, surface temperatures and their distribution etc.)
 - aim at realistic combination of surface temperatures/net surface fluxes (Gregory plot passing through 14.5 ° / 0.6 W/m²)
- A Pre-Industrial (PI) spin-up
 - fine tuning for transient runs between 1850 and 2010.
 - adjusted land-use fields

Tuning atmosphere

- Optimize:
 - Radiative fluxes (Net SFC, Net TOA, LW, SW, LHFL, SHFL, cloud forcing
 - TOA-SFC imbalance reduced to -0.27 W/m²
 - P-E and SSH changes
 - imbalance P-E = -0.016 mm/day
 - Specific fields, e.g. t2m temperatures
 - Performance indices (Reichler and Kim 2008)
 - Regional properties of specific fields
 - model variability (e.g. QBO)
- Tune atmosphere at both resolutions (T255 and T511)

Sensitivity tests

parameters affecting convection, entrainment rates, precipitation, and other water-cycle-related features:

ENTRORG: organized entrainment in deep convection
 1.RPRCON: rate of conversion of cloud water to rain
 2.DETRPEN: detrainment rate in penetrative convection
 3.ENTRDD: average entrainment rate for downdrafts

4.RMFDEPS: fractional massflux for downdrafts

5.RVICE : fall speed of ice particles

6.RLCRITSNOW: critical autoconversion threshold for snow in large scale precipitation

7.RSNOWLIN2: snow autoconversion constant in large scale precipitation.

8.RTAUMEL: relaxation time for the melting of falling solid particles for large scale precipitation

9.RALBSEAD: albedo for diffusive radiation over the ocean

10.RCLDIFF: Mixing coefficient for turbulence, controls cloud cover

(linear) Sensitivity of radiative fluxes

	Toa Net LW	TOA Net Sw	LWCF	SWCF	NetSFC
RPRCON	-4.70	6.96	-3.59	7.30	2.24
RVICE	-36.17	18.03	-35.28	19.83	-18.40
RLCRITSNOW	0.56	-0.37	0.61	-0.39	0.19
RSNOWLIN2	140.00	-97.00	148.50	-101.90	40.00
ENTRORG	-0.55	-1.84	-0.25	-1.80	-2.47
DETRPEN	1.14	-3.40	1.23	-3.30	-2.21
ENTRDD	0.02	0.48	0.00	0.44	0.50
RMFDEPS	0.80	-6.39	0.20	-6.46	-5.52
CONDLIM	1.18	0.47	0.89	0.34	1.63

[W/m² per unit parameter change]

To plan new tuning parameter sets starting from an existing experiment (using a 'tuning simulator' to compute the effect of new configurations)

Tuning of the coupled model

Problem: need long runs (100s of years) to bring the ocean into equilibrium

Approach: First estimate of the equilibrium temperature and climate sensitivity can be obtained with a "Gregory" plot

Climate sensitivity ~ 4.5 K for a doubling of CO2

Current climate (surface temperature and net surface energy flux)

Questions

- experience with CMIP6 forcings
 - Mostly implemented ...
- have you yet started any simulations, and if so which ones?
 - tuning only for standard resolution, AMIP HighresMIP ongoing
- first results from CMIP6 simulations
 - none
- when are you planning to submit model output from the DECK to the ESFG?
 - by mid 2018
- when are you planning to submit model output from the CMIP6 historical simulations to the ESGF?
 - by mid 2018
- when are you planning to submit CMIP6-Endorsed MIPs experiments to the ESGF
 - starting by end 2018
- have you yet started filling the ES-DOC questionnaire?
 - first inventories