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Is one forecast better than another?
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» Operational forecasters: when to switch to new prediction system?
» Modelers: did the change in model improve skill?

> Scientists: why? resolution? initialization? physics?
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Initialized vs. Unitialized Forecasts
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Initialized vs. Unitialized Forecasts
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Initialized vs. Unitialized Forecasts
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Deterministic Skill Measures for a Time Series

» correlation coefficient

> mean square error
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Anomaly correlations of the North Atlantic Subpolar Gyre OHC
anomalies (circle). The bar indicates the two-sided 90% confidence
interval using Fishers z transform.

Msadek et al., 2014, J. Climate



RMSE Init/RMSE Nolnit for tas at forecast time 2-5yrs

Ratio of root mean square error of initialized over uninitialized decadal
hindcasts. Dots indicate where the ratio is significantly above or below 1
with 90% confidence using a two-sided F-test.

IPCC AR5 WGL1 fig. 11.4
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Test Equality of Variance (07 = 03)

Statistic: Let s2 and s? be the sample variances:

Theorem: If samples are independent and identically distributed as a

Gaussian, then
F~Fov,.

where 11 and v, are the appropriate degrees of freedom.
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Standard Tests Assume Forecast-Verification Pairs are Independent
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For Model Comparisons, Forecast-Verification Pairs are Dependent

Distribution
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Correlation Between Errors
9 models, 8 leads, 1982-2009
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NMME skill estimates tend to be correlated in seasonal forecasting.
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ratio of MSEs
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Summary

1. Commonly used tests for skill differences are not valid if skills are
computed using a common set of observations.

2. These tests do not account for correlated prediction errors.
3. Familiar tests wrongly judge differences in skill as insignificant.

4. The bias is not negligible for typical seasonal forecasts.

Some legitimate model improvements may have gone undetected
using standard tests.
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What IS the proper way to compare forecast skill?
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Comparing Predictive Accuracy

Francis X. DiesoLp
Department of Economics, University of Pennsylvania, Philadelphia, PA 19104-6297, and
National Bureau of Economic Research, Cambridge, MA 02138

Roberto S. Mariano
Department of Economics, University of Pennsylvania, Philadelphia, PA 19104-6297

We propose and evaluate explicit tests of the null of no inthe y of
two competing forecasts. In contrast to previously developed tests, a wide variety of accuracy
measures can be used (in particular, the loss function need not be quadratic and need not even
be symmetric), and forecast errors can be non-Gaussian, nonzero mean, serially correlated,
and G ic and exact finite ple tests are

evaluated, and illustrated.

KEY WORDS: ic loss function; rates; Forecast evaluation; Forecasting;
Nonparametric tests; Sign test.
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Similar Approaches in Weather Prediction

» Thomas Hamill, 1999: Hypothesis Tests for Evaluating Numerical
Precipitation Forecasts, Mon. Wea. Rev.
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Forecast A\

Event

Forecast B/

If forecasts are equally skillful, then probability of

skill of A > skill of B

is 50%.



Forecast A\
Forecast B/

Event

If forecasts are equally skillful, then probability of

skill of A > skill of B

is 50%. This is true:
> regardless of the measure of skill.
» even if forecasts are highly correlated.
» regardless of forecast error distribution.
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This test is exactly the test for deciding if a coin is fair.
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This test is exactly the test for deciding if a coin is fair.

» The number of heads follows a binomial distribution.

» The number of heads minus the number of tails is a random walk.
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Random Walk Test
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Random Walk Test
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Random Walk Test

successes - fails




Random Walk Test
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North American Multi-Model Ensemble

v

Hindcasts initialized every month from 1982-2010 (29 years)
Lead 2.5 months

MSE of NINO3.4

Verification: OISST

v

v

v

] model \ ensemble size ‘
CMC1-CanCM3 10
CMC2-CanCM4 10

COLA-RSMAS-CCSM3 6
GFDL-CM2p1 10
NASA-GMAO 10
NCEP-CFSv1 10
NCEP-CFSv2 10
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Counts
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An Analysis of the Nonstationarity in the Bias of Sea Surface Temperature
Forecasts for the NCEP Climate Forecast System (CFS) Version 2
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Multimodel Mean
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Statistical Prediction

A

Tm—i—T = bm,T + é\’m,fr Tm,

where lA)myT and 3., ; are least squares estimates of the slope and
intercept estimated from independent data.
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Counts
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Monthly Mean NINO3.4 Forecasts by Regression
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Exchangeability

Hypothesis: ensemble members exchangable.

Test: Compare skill of different ensemble
members from same model.
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Comparing Ensemble Members from Same Model
no bias correction; lead= 2.5; alpha= 5%
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Strictly Exchangeable Not Strictly Exchangeable
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SubX Project

30+ day forecasts initialized each week.
Hindcast Period: 1999-2015 (17 years).
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Compare to persistence forecast
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Pattern Correlation of Week 3-4 Temperature Predictions
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Compare to CFSv2 forecasts
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Comparison to CFSv2
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Precipitation
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Comparison to CFSv2 Precipitation Forecasts
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Summary

1.

Skill measures computed on a common period or with a common
set of observations are not independent.

Standard tests for differences in correlation or MSE are biased when
evaluated over common period.

Random walk test avoids these problems and moreover applies to
non-Gaussian distributions and arbitrary skill measures.

NMME: Canadian models are the most skillful dynamical models ,
even when compared to the multi-model mean.

NMME: A regression model is significantly more skillful than most
other models.

NMME: There are significant skill differences between ensemble
members from same model, reflecting differences from initialization.

SubX: Week 3-4 forecasts of Temp/Prec are more skillful than
persistence forecasts.

SubX: CESM, EMC, ESRL, GMAO models more skillful than CFSv2
precipitation forecasts.
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