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Weather and climate modelling capabilities diverged in the past....

Purpose Weather:
Weather Predict states (and
uncertainties) over short time
scales given initial conditions

forecasting

. Purpose Climate:
C“mate Predict mean changes in state
(and uncertainties) over long time

prediction

SCECMWF scales given external forcing




Global model shortwave radiation systematic errors are virtually identical

S ECMWF

across models, across resolutions, across timescales

Annual mean top-of-atmosphere SW radiation difference from CERES-EBAF

CMIP3 mean (bias=4.5 Wm) CMIP5 mean (bias=2.5 Wm)
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Albedo too low Albedo too high ~ (Wm?)



Weather and climate modelling capabilities,
but are now gradually converging....

Today they share many nearly identical elements & related challenges (numerics, physics,
ocean, atmosphere, cryosphere, land, conservation, composition, uncertainty representation)
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Weather and climate modelling capabilities,
but are now gradually converging....

Today they share many nearly identical elements & related challenges (numerics, physics,
ocean, atmosphere, cryosphere, land, conservation, composition, uncertainty representation)
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Improvements to NWP systems : better predictions from days to months ahead

S2S: Progress in monthly prediction

Anomaly correlation geopotential height 500hPa 2018/19 vs 2013/14 20 years or progress in ENSO prediction
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The quiet revolution of numerical The sub-seasonal to seasonal prediction project (S2S) and the
weather prediction prediction of extreme events

COMBINED advances in NWP key ingredients:

science (physics, numerics, uncertainty, data assimilation)
resolution

utilisation of observations

supercomputing
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Improvements to NWP systems:

Much better representation of Sudden Stratospheric Warming events,
due to changes in the Semi-Langrangian scheme (Diamantakis, 2014)
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Modern reanalysis, e.g. ERAS5 ~ 32km, 137 levels,
Copernicus atmospheric monitoring service
(CAMS) reanalysis ~ 80km, 60 levels

Great tools for climate & atmospheric monitoring & model evaluation

CCECMWF Q)pernicus

Europe’s eyes on Earth

better reanalysis & monitoring

Linear trends in 2m temperature

CAMS Total Fire Radiative Power Arctic Circle

(K/decade) for 1979-2017 ERAS

: —
= ¥ e

Total Five Ragiative Pewer 1 GV

~
w

~
S

w

=

-

o

CAMS Duily Total Frre Radatve Power (GFASY1.2) forthe Asctic Circle

30jun o) Wju 16-Aug

('a—ﬁ LS ( CECMWF



Weather and climate modelling capabilities,
but are now gradually converging....

Today they share many nearly identical elements & related challenges (numerics, physics,
ocean, atmosphere, cryosphere, land, conservation, composition, uncertainty representation)

Weather
forecasting
_ _ _ Improving weather
FunCt'Obr;aC';Pf[gr\C/’vg‘a?ﬂrenrate fed Shared forecasting systems leads
(e.q. ocean, sea-ice) . to improved climate
9. ) mfrastru cture prediction & monitoring
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Pressure, hPa

Improvements to forecast skill by incorporating ocean and sea-ice components

Reduction in wind RMSE
day &5
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Sea-ice model
monthly timescales

Progress in ENSO Prediction (2011-2016)
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Why weather and climate modelling capabilities should converge even further?

Weather
forecasting
Shared
Infrastructure

Climate

prediction &
monitoring
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Commonalities of challenges in weather and climate

Observation/assimilation: key to model improvement,
initialization
Physical processes: key for eliminating systematic errors

Coupling: drives how Earth-system components interact:
fluxes, budgets

Ensembles: uncertainty representation

Computing: key to running realistic models in the future



3
Challenges in the use of microwave observations in polar regions APPLICATE.eu

Advanced prediction in
polar regions and beyond

Summer 2016 Winter 2017/2018
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» better coverage from polar
orbiting satellites than
anywhere else

Nb obs

NOAA-15 : tae o B & Fgeo 2+ Much less effective use in
AMSU-A channel 5 ' S e winter than in summer due

(peaks 500_700hPa) a) AMEU-A channel 5 mean O - B summer b} AMEU-A channel 5 mean O - B winter to Cha"enges over snow
-0.3 -‘3- 15 b2 : -0.15 --ﬂ‘1 -‘3.45 0 - -] : -ﬂ‘ﬂi ﬂ.i ﬂ‘1.5 0.2 025 0.3 and Sea_lce

* Improving their use will
improve not only weather
fc but also future
reanalysis, and hence
climate monitoring

Obs - fc
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Lawrence et al, 2019



Better weather forecasts

Orographic drag parametrizations =—» o _
More realistic model climate

Cyclones track density biases during DJF

CMIP5 — ERA-INTERIM UM — UM-no mountains

e) 150

c)

Any yet, orographic drag parametrizations remain
a challenge and are largely poorly constrained

 EiR npj Climate and Atmospheric Science . nature ominpicmatsc
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PERSPECTIVE OPEN
Impacts of orography on large-scale atmospheric circulation

a

. . . . ; Irina Sandu', Annelize van Niekerk’, Theodore G. Shepherd’, Simon B. Vosper’, Ayrton Zadra®, Julio Bacmeister”, Anton Beljaars’,
Climate model biases in the jet stream regions Andrew R. Brown’, Andreas Dmbrack®, Norman McFadane”, Felx Pithan® and Gunilla Svensson’

during winter partly result from missing blocking
effects of large-scale mountains

Pithan et al., GRL, 2016
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Using NWP techniques & km-scale simulations to constrain orographic drag

explicit orography
ICON (2.5km)

Height (m)

parametrized orography
UM 130 km IFS 130 km

Height (m)

Prossure (hPa)
g

m/s/day

COORDE — a GASS/WGNE intercomparison
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The Holy Grail: towards global storm-resolving resolutions

ICON HErZ - NARVAL-lI - HD(CP)* Simulations: 20160606 +10.0h
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» Representation of the global mesoscale (in the atmosphere/ocean/sea-ice)
» Multi-scale scale interactions of convection

« Land-surface heterogeneity

» Orographic effects and gravity waves

« Better link to applications

e rerseecve  Pglmer and Stevens, PNAS, 2019

S ECMWF The scientific challenge of understanding and DYAMOND, Stevens ef al., 2019
estimating climate change - https.//www.esiwace.eu/



The Holy Grail: towards monitoring of human CO2 emissions
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Inverse modelling of the CO2 emissions

\@ Human

Emissions

CO, above
global mean

CO, below
global mean
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Why weather and climate modelling capabilities should converge even further?

Commonalities of challenges in weather and climate

Weather .
forecasting

Shared
infrastructure ’
&scalability

challenge y

Climate

Observation/assimilation: key to model improvement,
initialization
Physical processes: key for eliminating systematic errors

Coupling: drives how Earth-system components interact:
fluxes, budgets

Ensembles: uncertainty representation

Computing: key to running realistic models in the future

prediCtiOn & Reflecting on the Goal and

monitoring

Baseline for Exascale
Computing: A Roadmap

Based on Weather and O(x000) too slow/big data
Climate Simulations

& ECMWF
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Performance and portability of the codes

Control layer:
3d (Fortran, C, C++, OpenMP, Python) - ‘ 1d(Fortron) ) A
Model: ’ ] Y Il ‘ | H H ]
lxp : 1 AL ) '\_ A ) u A "‘
Atlas (C++, Fortran) - fields i L I
grids, meshes; field data; function space; interpolation, halo exchange
- (C+4) ' Loki (Python)
? ang (L++), U ctio .
D51 toolch : single-column auto-extraction
rootdnd GT4Py (Python) 3 Translation
auto code- TV Y = .
conversion CLAW (Fortran) (tool-chain)
auto code-conversion

R 2 &
GridTools, HIR

_bock-end generic representation of kernel code; algebraic stencil expressions and
.\ iteration spaces; architecture specific optimisations
Atlas (C++) - data

distributed parallefism; memory layout; communication

Foﬁian, C, C++, OpenMP-5, OpenCL, MaxJ, Python

Standards:

PGA ASIC

CPY, GPU, FPGA, ASIC.

Hardware:

Structure and components necessary for the transition of the IFS to separate
applied science from hardware sensitive code level — ‘separability of concerns’

S ECMWF



A vision of data-centric workflows

Output

Current operational data pipeline

Conventional Our codes
Observations
ODB Store —P Multio
— IFS —> Server
. loT
loT Observations | Preprocessing

Vi

Alternative data pipelines

Harmonised data model beyond individual applications
Establishing a cloud-based data handling philosophy

S ECMWF



Holistic approach for weather and climate computing

2014 | 2016 | 2018 | 2020 | 2022 | 2024 | 2026 |

— Science of prediction Advancing Weather Science

N 'jn‘e{'xﬁt‘g‘e‘n‘i‘o‘ Lx-
— Concepts portability/performance/ ESCAPE:

. e MAESTRO |[EPIGRAM|ZE!
data centric workflow ESCAPE@ l VIAEST RO -

_ _ ( / esiwace
— Adaptation of leading models to (pre-)exascale; - >z i T g ) aaavace?
. - . | Vi pd
common strategies for community i /1S-Eres &/ o suu i mouion o v

— Redesign entire prediction philosophy
¢

1. Full-sized applications with required speed/volume and power footprint iy, =
2. Ingestion of downstream applications, all ensembles
3. Domain-specific, distributed computing capability, interactive workflows



Why should weather and climate modelling capabilities converge even further?

.

ARPEGE-NH, DYAMOND, 2.5km, courtesy Philippe Marginaud, Meteo-France

Weather

forecasting

Shared
infrastructure
&scalability
challenge

Climate

prediction &
monitoring
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Benefits weather prediction, climate modelling & services, in
particular in terms of assessment of impacts on economic and

22 ECMWF social sectors (e.g. renewable energy) opermicus
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Improved storm track/Southern Ocean shortwave radiation bias

Implementation in IFS 45r1 (operational June 2018)

TOA shortwave radiation (IFS — CERES EBAF)
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Southern Ocean (and NH
stormtrack) shortwave bias
significantly reduced



