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1.   SUMMARY OF THE WORKSHOP 
 
 The Workshop on the Objective Analysis of Precipitation sponsored by the  Global Energy and Water 
Cycle Experiment, Global Precipitation Climatology Project (GPCP) and the European Center for Medium Range 
Weather Forecasts was held during March 11 – 13, 2000 at the European Center in Shinfield Park, Reading, United 
Kingdom.  The workshop was organized and chaired jointly by Masao Kanamitsu of Scripps Institution of 
Oceanography and Arnold Gruber of NESIS.   
 
 The primary goals of the workshop were: 
 
 ? To improve our understanding of the issues involved in the objective analysis of precipitation using the 
many sources of information available (e.g., gauges, satellite-derived estimates, radar observations, and model 
output data).  
 
 ? To make recommendations for GPCP to advance its efforts to provide global analyses of precipitation.   
 
 The focus of the workshop was to exchange ideas and opinions concerning those goals with data 
assimilation experts.  The location of the workshop was chosen for this purpose.  
 
 Twenty six participants from academia and government agencies from seven different nations presented 
their latest work on analysis procedures, data assimilation, and observational error characteristics.  GPCP, Climate 
Prediction Center Merged Analysis of Precipitation (CMAP), data assimilation and other precipitation analysis 
methods were reviewed.   The participants and their affiliations are shown in Appendix II.  The focus of the 
presentations varied somewhat between the observation only analysis, and data assimilation analysis groups.  In the 
former, center of attention was on the problem of precipitation observation, bias corrections, and merging of 
different types of observations.  In the latter group, the use of the observations was limited to the Tropical Rainfall 
Measurement Mission (TRMM) and radar/rain gauge measurements, while the emphasis was on precipitation 
observation utilization methodology in the data assimilation system.  This difference clearly contrasted the major 
interests of the two groups; one is more concerned with the precipitation observations themselves, while the other is 
concerned with the utilization methods.  However, there are many common subjects between the activities of the 
two groups which resulted in valuable working group recommendations, described in more detail below.  The 
quality control of precipitation observations, precipitation characteristics observed from TRMM, and monitoring of 
the precipitation in polar region were also presented.  These talks emphasized importance of further research on data 
sampling and analysis methods, observed characteristics of precipitation (convective vs. stratus and liquid vs. solid), 
and verification/validation. A consensus regarding the necessity to enhance international collaboration on 
precipitation concluded the presentations.  Extended abstracts of the presentations are included in Section 4.  
Deliberations by the working groups on observation only analysis, data assimilation, and quality control produced 
the key recommendations described in Section 3. 
 
2.  WORKSHOP BACKGROUND  
 
 The Global Precipitation Climatology Project has been producing monthly averaged precipitation analysis 
based on rain gauges, infra-red, and microwave radiometer measurements for quite some time (Huffman et al. 
1997a,b, Adler et al. 2003).  The method of analysis is a sequential merging of various gauge and satellite estimates 
by removing the bias estimated from reference observations (such as the rain gauge).  There are many difficult 
aspects of these procedures, which are described in more detail by Huffman in this report.  CPC Merged Analysis of 
Precipitation (CMAP) is another separate effort to obtain monthly averaged precipitation, that also utilizes satellite 
infra -red, microwave and gauge data, with differences in the bias corrections and analysis methods (Xie et al. 2003).  
These analyses have been used extensively for model verifications and climate research, and have been proven to be 
an invaluable source of data.  These analyses will be referred to as “observation only analysis” in this report.  There 
are other observation only precipitation analyses using neural network, and analyses based on rain gauge only.  The 
success of the GPCP project is now leading the effort to refine the product to produce precipitation analysis in finer 
spatial and temporal scales (Huffman et al. 2001).  Such a product requires a new approach to the analysis that is 
different from the monthly average precipitation analysis. 
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The utility of the observation only GPCP precipitation analysis is demonstrated in Figure 14 though 17, 

taken from Gruber et al. (2000).  These figures compare GPCP, CMAP, AMIP and NCEP/NCAR reanalysis.   
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The anomaly correlation between the CMAP and GPCP is of the order of 0.9 (higher when spatially smoothed) over 
the tropics, indicating the degree of similarity between the two independent analyses (note that there are many 
observations common to both).  The comparison of the model AMIP runs (in which the atmosphere is forced by 
observed SST) shows that the correlation is much lower (for both NCEP and ECHAM models).  The NCEP/NCAR 
reanalysis precipitation, which is a model generated precipitation with atmospheric variables but without 
precipitation assimilation, has higher correlation than the AMIP runs, but still of the order of 0.5.  Because of the 
low correlation with model precipitation, the observation only analysis is an important reference analysis against 
which  the model precipitation can be verified. 
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In contrast to the observation only precipitation analysis, operational numerical forecast centers around the 

world have been working on objective atmospheric analysis methods for the initial conditions of atmospheric 
models.  Recent developments in variational data assimilation methods significantly improved analyses, part icularly 
in its use of satellite observations.  The method is capable of incorporating “retrievals” into the analysis scheme, 
allowing the direct use of satellite radiance observations.  Although data assimilation methods are designed to 
provide the best initial conditions that produce the best forecasts, the improvement in forecast model and analysis 
procedures made the analysis suitable for more general use.  The various reanalysis efforts that utilize data 
assimilation methodology to produce long series of atmospheric data for study of the climate and other applications 
are good examples.  The application of 3- and 4-dimensional data assimilation made it possible, for the first time, to 
use a variety of observations.  More recently, precipitation observations have been used in the data assimilation with 
some success.  Such developments have the potential to provide a useful precipitation analysis comparable to the 
observation only analysis.  The greatest advantage of the assimilation analysis is that the final analyses of the 
atmospheric and land surface parameters are in dynamical, thermodynamical and hydrological balance, which is 
required for understanding the global energy and water cycle.  Unfortunately, observation only analyses are not 
capable of providing a complete picture of the atmospheric and land states.  Data assimilation methods are always 
aimed at providing an analysis at synoptic times for weather forecasts.  The instantaneous precipitation intensity data 
is preferred for input, and the resulting analysis of precipitation will be in the form of accumulation during the short 
model integration.  In this sense, the objectives of observation only and assimilation analysis are getting closer to 
each other. 
  
 The existence of these two nearly independent analysis efforts prompted us to create an opportunity for 
these two groups to meet, discuss and learn from each other. 
  
2.1  DISCUSSION POINTS FOR OBSERVATION ONLY ANALYSIS  
 
 The merging method and bias corrections applied in the current precipitation analysis lacks the strict 
concept of error minimization.  Whether we need such a concept should be addressed, but removing empiricism is 
an important improvement.  Discussion with the data assimilation group is valuable since their method is entirely 
dependent on this concept.  The use of forecast model guess has been debated for a long time.   The “model 
dependency” of analysis should not necessarily be avoided, if it is properly justified through proper verification.  
The model guess should be considered as a time extrapolation, and its use should be encouraged.  Generating 
consistent analysis between precipitation and other variables, such as cloudiness and radiation fluxes needs to be 
considered.  The data assimilation analysis automatically produces consistent analysis of all these variables.  
However, lack of the assimilation of these quantities makes the “analysis” move away from observations.  Whether 
we wait for the improvement of the data assimilation, or consider other ways, needs to be discussed. (Is it 
worthwhile to consolidate observation only analysis to include other precipitation related variables, such as 
cloudiness, radiation fluxes and soil moisture? 
 
2.2  DISCUSSION POINTS FOR DATA ASSIMILATION ANALYSIS  
 
 Currently, data assimilation limits the use of observed precipitation to  Special Sensor Microwave Imager 
(SSM/I) and  TRMM estimates, and radar  calibrated by rain gauges.  This is due to the requirement of the 
assimilation system that calls for specific knowledge of the character of the observation.  Expansion of the 
observational data base to a variety of data sources is desirable, but the characterization of the observation for use in 
data assimilation is lacking.  Mutual discussion and collaboration with the observation only analysis group may lead 
to better use of data as well as better understanding of the error characteristics of the GPCP precipitation analysis. 
 
 The geographical distribution of precipitation is strongly affected by orography, land/ocean distribution and 
subtle difference in land surface characteristics.  The diurnal variation of precipitation is also known to be a 
significant part of precipitation variability, particularly in the tropics.  The phase and amplitude of the diurnal 
variation is a strong function of surface conditions as well as geographical features.  Incorporation of these 
inhomogeneous distribution characteristics into the data assimilation is a very difficult task.  Again, the 
collaboration with other precipitation analysis experts is desirable.  
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 The difficulties associated with the collaboration between the observation only analysis group and the data 
assimilation analysis group lies in communication with each other, since both groups tend to speak different 
“languages”.  This difficulty should be resolved by identifying common problems and interests.   As discussed 
earlier, there are many common subjects regarding which collaboration will provide benefit to both groups. 
    
2.3  REFERENCES  
 
Adler, R.F., G.J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf6, U. Schneider, S. Curtis, 

D. Bolvin, A. Gruber, J. Susskind, and P. Arkin, 2003: The Version 2 Global Precipitation Climatology Project 
(GPCP) Monthly Precipitation Analysis (1979-Present).  J. Hdrometeor., submitted. 

Gruber, A., X. Su, M. Kanamitsu and J. Schemm, 2000: The comparison of two merged Rain gauge-Satellite 
precipitation datasets.  Bull. Amer. Met. Soc., 81, 2631-2644. 

Huffman, G.J., R.F. Adler, P. Arkin, A. Chang, R. Ferraro, A. Gruber, J. Janowiak, A. McNab, B. Rudolf, 
U. Schneider, 1997:  The Global Precipitation Climatology Project (GPCP) Combined Precipitation Data Set.  
Bull. Amer. Meteor. Soc., 78(1), 5-20 (incl. cover). 

Huffman, G.J., R.F. Adler, M. Morrissey, D.T. Bolvin, S. Curtis, R. Joyce, B McGavock, J. Susskind, 2001:  Global 
Precipitation at One-Degree Daily Resolution from Multi-Satellite Observations.  J. Hydrometeor.,  2(1), 36-50. 

Xie, P., J.E. Janowiak, P.A. Arkin, R.F. Adler, A. Gruber, R. Ferraro, G.J. Huffman, and S. Curtis, 2003: GPCP 
Pentad precipitation Analyses: An Experimental Data Set Based On Gauge Observations And Satellite Estimates .  
J. Climate, to appear. 

 
3.  WORKSHOP RECOMMENDATIONS   
 
 1. The observation only analysis needs to continue.  The precipitation analysis from  advanced data 
assimilation is still not sufficiently accurate, and observation only analysis needs to be used as a baseline.  The 
quality of the observation only product should continue to improve. Various analysis issues, including data 
collection, bias correction and merge procedure should also be studied further.   The requirements from NWP 
community were sub-divided into the validation of the global model (analysis and forecast), climate (monthly data), 
the use of precipitation observations for data assimilation (6 hourly), and the validation of extreme event forecasts 
(hourly).  It was stressed that all data levels should be made available to allow the wide range of applications of 
precipitation information in NWP. This includes level-1b (calibrated, navigated raw instantaneous observations), 
2 (first-order products; instantaneous), 3 (merged, accumulated products; gridded) data of rainfall, rainfall frequency 
of occurrence, and associated errors.  It was pointed out that for the optimum utilization of precipitation data in 
NWP data assimilation systems, a very close collaboration between algorithm/product developers and modelers is 
needed.  
  
 2.   It is clearly recognized that there is a need for providing  error statistics more useable for data 
assimilation. This includes error statistics of individual observations, rather than the merged products, of each 
component of errors, namely, the errors associated with a) instruments, b) physical retrieval, c) assumptions on 
spatial representativeness and d) assumptions on temporal representativeness.  It is also desirable to provide spatial 
and temporal correlations of observational error, error in precipitation detection and uncertainties in the bias. 
   
 3. Active collaboration between modelling/observation/validation groups is needed for a complete 
description of the analysis errors: biases (their uncertainties), error covariances, their state dependence, and 
methodologies for the description of their dependence on space and time scales and synoptic conditions.  The GPCP 
analysis project can provide additional valuable information to the NWP community, but more communication 
between the two groups is needed.  This can be achieved through GPCP, GRP and International Precipitation 
Working Group. 
 
 4. As to the future analysis method for GPCP, the data assimilation group believes that pursuing the 
assimilation method is not recommended and some other more nonlinear methods (such as Krieging method) 
suitable for analysis of precipitation should be developed.  Such work will also complement the data assimilation 
analysis. 
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5.  There is an indication that precipitation from the data assimilation system can be more accurate 
than satellite estimates over some areas, particularly in higher latitudes, orographic areas, rain over snow covered 
areas and during snowfall.  Addition of data assimilation precipitation analysis into the observation only analysis 
should be considered for providing more accurate, fully global precipitation analysis to general users.  In this regard, 
the exa mination of the accuracy of data assimilation precipitation needs was encouraged. 
 
 6. For the observation only analysis, it was recommended that research be pursued on the 
determination of  frozen/snow precipitation in complex terrain and the use of new satellite observations. Also data 
products on smaller space and time scales need to be developed because data assimilation methods will increasingly 
focus on more regional applications. 
  
 7. It was recommended to continue developing high-quality, unbiased reference sites across the 
range of climate regimes for validation of precipitation analyses.  There is also a need for research on radar 
precipitation estimates, which are increasingly used by regional data assimilation analyses. 
 
 8. Research on analysis  methods of temporally and spatially discrete observation should be pursued.  
The diurnal variation of precipitation, rapid propagation of precipitation systems and satellite observations made 
from once/twice a day passage of the area may severely alias the real space and time scales.  This also relates to the 
definition of space and time characteristics of the observational error. 
 
 10. Research on precipitation types and their spatial and temporal characteristics is encouraged.  Such 
study is essential for determining the observational error characteristics of precipitation phenomena.  The use of 
TRMM observation is ideal for such studies. 
 
 Finally, data assimilation methods  holds the key to the future of precipitation analyses, since its greatest 
advantage is that it can provide the analysis of observed and derived meteorological variables (together with 
precipitation) in a dynamically, physically, and hydrologically consistent manner.   However, it will take several 
more years before such analysis becomes as accurate as currently available observation only analyses.  The GPCP 
collaboration will certainly accelerate this important development. 
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1.  INTRODUCTION 

The Global Precipitation Climatology Project (GPCP) currently produces three precipitation 
analyses:  The Version 2 Satellite-Gauge (SG) combination, the pentad product, and the One-
Degree Daily (1DD) product.  Most of the work is done with precipitation estimates as the input 
variable, rather than the sensor’s native parameter(s).  Where appropriate, we take the “best” 
estimators of precipitation to provide the underlying statistics for calibrating other estimators, 
which are frequently better in spatial or temporal coverage.  We compute the calibrations by 
month to assure stability.  In the course of developing the various algorithms we chose to build 
algorithms that only needed the parameters already available in the input data sets. Finally, we 
have emphasized producing random error estimates for each input data set (Huffman 1997). 

 
2.  AVAILABLE DATA SETS 

One challenge for developing the GPCP algorithms was developing the list of input data sets 
that are quasi-global, have a long record, and have acceptable statistical characteristics.  The 
current list is: 
• Raingauge analyses (1979-present), 
• Special Sensor Microwave Imager (SSM/I) passive microwave estimates (mid-1987-present), 
• Geosynchronous Earth orbit infrared (geo-IR) and low Earth orbit infrared (leo-IR; both 1986-

present),  
• Television-Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS; 

1979-present), and  
• Outgoing Longwave Radiation (OLR) Precipitation Index (OPI; 1979-present). 

In the first three types of data there are multiple algorithms with various periods of record 
based on the availability of the underlying data.  In particular, the IR becomes easily available at 
finer scale starting in late 1996 (as the result of action by the GPCP), which enabled the start of 
the 1DD, even as the monthly and daily dataset production continued. 

 
3.  CURRENT ALGORITHMS 
3.1  Version 2 SG Monthly 

The Version 2 SG is a monthly estimate of precipitation and corresponding random error on a 
2.5°x2.5° latitude/longitude grid.  Besides these two final fields, there are more than a dozen 
intermediate fields available (with the exact number depending on the input data).  See Adler et 
al. (2003) or the on- line documentation at the GPCP web site for details. 

We consider the SSM/I era (July 1987 to the present) to be most accurate.  This is due to the 
availability of passive microwave data, which has a much more direct physical connection to 
precipitation than the other satellite data we use.  During this period we apply a third generation 
of the Satellite-Gauge-Model approach first described by Huffman et al. (1995) and updated in 
Huffman et al. (1997).  Despite the name, note that no model data is used in the current system.  
The processing sequence is as follows: 
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• An SSM/I-TOVS composite is produced by taking the SSM/I in the band 40°N-S, then 
transitioning to TOVS adjusted by zonal-average gauge at 70°N and S, and using the adjusted 
TOVS to the poles. 

• The Geosynchronous Operational Environmental Satellite (GOES) Precipitation Index (GPI) 
values computed from geo- and leo-IR are separately calibrated to the SSM/I using a month of 
approximately coincident data, resulting in the Adjusted GPI (AGPI). 

• A multi-satellite (MS) field is created, consisting of the AGPI, where available, in the band 
40°N-S and the SSM/I-TOVS composite elsewhere. 

• The final SG is the result of bias-adjusting the MS to the gauges, where feasible, then 
combining the two using inverse error variance weighting. 
In the years before the IR are available, a calibrated OPI is used as the MS and combined with 

the gauge as above.  The OPI calibration is a monthly, climatological adjustment to the SG for 
1988-1996. 

During 1986-mid-1987 the IR are available, but not the SSM/I.  There, the calibrated OPI 
stand in for the SSM/I-TOVS composite and the analysis proceeds as described. 

 
In general, the Version 2 SG has proved to be useful for a wide variety of studies.  The data 

boundaries at the beginning of 1986, in mid-1987, and at 40° N and S are known issues for 
which users should specifically check.  As one example, the full time series of the GPCP global-
average precipitation is shown in Fig. 1.  The major dips in the smoothed land average have a 
high negative correlation with El Niño events; there is a slight positive correlation  

 

 
 
Figure 1.  Time series of GPCP Version 2 global-average 
precipitation for ocean (upper curve), land (lower curve), 
and grand total.  The heavy lines are 12-month running means, 
while the thin lines trace the individual monthly values. 

 
in the ocean values and a near-zero correlation in the total field.  Note the slow multi-year 
variations, but the lack of any obvious trend over the period as a whole.  These last comments are 
quite preliminary due to the inhomogeneities in our data record. 
 
3.2  Pentad 

The pentad precipitation product is available on a global, pentad (5-day interval), 2.5°x2.5° 
grid for 1979 to the (delayed) present.  It is essentially a data-driven disaggregation of the 
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Version 2 SG.  There are 73 pentads in a year, and Leap Day is included in the pentad that spans 
the February-March month boundary.  The interval is chosen because it is the interval of the 
underlying OLR dataset. 

The OPI computed on pentads is approximately summed to months, calibrated against the 
corresponding month of SG, and the calibration is then applied to the individual pentad values.  
As with the SG calibrations, these OPI calibrations vary spatially, as well as by month.  See Xie 
et al. (2003) for more details. 
 
3.3  1DD Daily 

The 1DD precipitation is available on a global, daily, 1°x1° grid for the period October 1996 
to the (delayed) present. See Huffman et al. (2001) or the on-line documentation at the GPCP 
web site for details. 

In the band 40°N-S the 1DD is built from the Threshold Matched Precipitation Index, a 
microwave-calibrated IR technique: 

• Each month, coincident SSM/I-based fractional occurrence of precipitation and IR 
brightness temperature histograms are used to establish a spatially varying field of rain-no rain 
threshold, then  
• the full IR fractional occurrence and the Version 2 SG are used to establish a spatially varying 

field of conditional rainrate – the single rate at which all “raining” IR pixels are assumed to 
rain. 
Outside the band 40°N-S the 1DD is built from rescaled daily TOVS estimates.  Taken over a 

month the (1996) TOVS estimates that we use have too high a fractional coverage and 
correspondingly low rainrates.  In response, we 
• reduce the local number of TOVS rain days by the ratio of average TMPI and TOVS rain days 

at 40°, applied separately in the northern and southern hemispheres, and  
• rescale the remaining TOVS rain days to start at zero and sum over the month to the local 

Version 2 SG value. 
Despite the data boundary at 40°N and S, the global patterns have strong spatial and temporal 

continuity across the boundary.  Nonetheless, tt is important to note that the day-to-day 
occurrence of precipitation is driven by IR data at lower latitudes and TOVS data elsewhere, 
both of which primarily respond to clouds, not precipitation. 

Comparison with other data sets shows reasonable qualitative agreement in the day-to-day 
variation of precipitation, although the scatter diagrams comparing individual grid box values to 
gauges show significant scatter, as expected.  It does appear that the statistical properties of the 
1DD, such as fraction of rainy days and daily rainrate distribution are robust.  Thus, the 1DD will 
be more useful for applications that are more sensitive to the overall statistics of the daily rain, 
rather than to the detailed sequence of precipitation. 

Figure 2 provides an example of the use of the 1DD, namely the construction of a Hovmoller 
diagram around the Equator that covers the period of the 1997-1998 El Niño. The peak of the El 
Niño is November 1997 to May 1998, but the precipitation in the eastern Pacific Ocean (right 
center of the horizontal axis) is anomalously high as early as February 1997.  
 
4.  CONCLUDING QUESTIONS 

Work with the current GPCP products and coping with the limitations of the input products 
motivates the following questions: 
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• What improvements are possible in the recent/future era of plentiful satellite data (see 
companion talk)? 
 

Figure 2.  Hovmoller diagram of 1DD precipitation along 
the Equator (5°N-S) for the period 1997-1998. 

  
• What can/must be done in the earlier era of limited satellite data? 

- What is the right trade-off of accuracy, fine scale, and length of record? 
- Can we get more-detailed data from the earlier era, either by recovering higher-resolution 

versions of currently available summaries (such as IR), or by re-examining some of the 
earlier data sets and estimates? 

• What is the role of model-based estimates, given the earlier user opposition to any use of 
model data? 

• What is the right interval for calibrating IR brightness temperatures by other precipitation 
estimates? Operational schemes run from monthly to complete recomputations for each SSM/I 
overpass. 
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1.  INTRODUCTION 
 Satellite data form the core of the 
information available for estimating 
precipitation on a global basis.  While it is 
possible to create such estimates solely from 
one sensor, researchers have increasingly 
moved to using combinations of sensors in 
an attempt to improve accuracy, coverage, 
and resolution. The Multi-satellite 
Precipitation Analysis (MPA) reported in 
this presentation provides 3-hourly, 
0.25°x0.25° lat./long. gridded precipitation 
estimates that are being computed for the 
Tropical Rainfall Measuring Mission 
(TRMM).  Additional details are provided 
on the TRMM web site. 
 
2. THE MPA ALGGORITHM 
 The MPA is the latest fine-scale, quasi-
global estimate of precipitation developed in 
the authors’ research group.  The infrared 
(IR) approach traces back to schemes 
variously referred to as “3-hourly,” 
“VARR,” and “TMPI.”  The first MPA 
release was an experimental real-time (RT) 
system, starting in February 2002.  Major 
upgrades occurred in March 2002 and 
February 2003.  The latency of this product 
is about 6 hours after real time. A second 
release is planned as the Version 6 TRMM 
product 3B42, replacing the current product 
and moving it from 1°x1° daily in the band 
40°N-S to 0.25°x0.25° 3-hourly in the band 
50°N-S.  Reprocessing to effect this 
transition should commence in June 2003 
and take 9-12 months.  At the same time that 
reprocessing starts, subsequent months of 
new data will also be processed with the 

new Version 6 algorithms.  At that point, the RT 
will be considered a first look, to be replaced by 
the higher-quality after-real-time produce as 
each month of that becomes available. 
 
2.1 Input Data 
 The majority of the input data is based on 
two different sets of sensors.  First, microwave 
data are being collected by a variety of low-
Earth-orbit (leo) satellites, including the TRMM 
Microwave Imager (TMI) on TRMM, the 
Special Sensor Microwave Sensor (SSM/I) on 
Defense Satellite Meteorology Program 
(DMSP), the Advanced Microwave Scanning 
Radiometer for the Earth Observing System 
(AMSR-E) on Aqua and the Advanced Earth 
Observation Satellite II (AdEOS-II), and 
Advanced Microwave Sounding Unit (AMSU) 
on the National Oceanic and Atmospheric 
Administration (NOAA) satellite series.  These 
data have a strong physical connection to the 
hydrometeors that result in surface precipitation, 
but each individual satellite provides a very 
sparse sampling of the time-space occurrence of 
precipitation.  Even taken together, there are 
significant gaps in the current coverage by 
microwave estimates. 
 In contrast, the IR data that are being 
collected by the international constellation of 
geosynchronous-Earth-orbit (geo) satellites 
provide excellent time-space coverage.  
Recently, access to these data has been greatly 
facilitated by the Climate Prediction Center 
(CPC) of the National Weather Service/NOAA, 
which is merging the geo-IR data into half-
hourly 4x4-km-equivalent lat./long. grids.  The 
IR brightness temperatures (Tb) are corrected for 
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zenith-angle viewing effects and inter-
satellite calibration.   
 For post-real-time estimates before the 
start of the CPC data in early 1999, we use a 
GPCP data set that provides 24-class Tb 
histograms of geo-IR data on a 3-hourly, 
1°x1° lat./long. grid covering the latitude 
band 40°N-S.  We zenith-angle-correct the 
data, convert them to box-average Tb, and 
bilinearly interpolate them to the 0.25° grid.  
This data set also provides grid-box-average 
Geosynchronous Operational Environmental 
Satellite (GOES) Precipitation Index (GPI; 
Arkin and Meisner 1987) estimates 
computed from leo-IR data recorded by the 
NOAA satellite series.  These data are used 
to fill holes in the GEO-IR coverage, most 
notably in the Indian Ocean sector before 
Meteorological Satellite 5 (METEOSAT-5) 
began providing observations there in June 
1998.   
 The drawback to all IR-based 
precipitation estimates is that the Tb‘s sense 
cloud-top temperature, and implicitly cloud 
height.  Arkin and Meisner (1987) showed 
that such information is poorly correlated to 
precipitation at the fine scales, but relatively 
well-correlated at scales larger that about 1 
day and 2.5°x2.5°. 
 The project also makes use of the TRMM 
Combined Instrument (TCI) product, which 
is a multi-sensor estimate based on TMI and 
TRMM Precipitation Radar  data.  Finally, 
two sources of monthly rain gauge analyses 
are used, the GPCP analysis developed by 
the Global Precipitation Climatology Centre 
(GPCC), and the Climate Assessment and 
Monitoring System (CAMS) analysis 
developed by CPC. 
 In the course of developing the MPA, the 
authors realized that they could obtain 
(restricted) access to the requisite 
microwave and IR data within a few hours 
of observation time.  Knowing that “real-
time” (or more strictly, near-real-time) 
production could make the estimates useful 

to several new classes of users, a two-track 
approach was developed. The real-time and 
post-real-time approaches are sufficiently 
similar that a single description is given in the 
next section, with differences pointed out as 
needed. 
 
2.2 Estimation Algorithm 
 The MPA produced in three stages; (1) the 
microwave estimates are combined, (2) infrared 
estimates are created with microwave 
calibration, and (3) the microwave and IR are 
combined. Each MPA data field is intended to 
represent the precipitation rate at the nominal 
observation time. 
 
2.2.1  High Quality (HQ) Microwave Estimates 
 All of the available microwave data are 
converted to precipitation estimates.  At the 
present this is achieved by applying the 
Goddard Profiling Algorithm (GPROF; 
Kummerow et al. 1996) to TMI, SSM/I, and 
AMSR-E (real-time only) pixel data, and 
averaging each to the 0.25° resolution over the 
time range ±90 minutes from the nominal 
observation time.   All of these estimates are 
adjusted to a “best” estimate using probability 
matching of rain rate histograms assembled 
from coincident data.  In the post-real-time 
system the calibrating data source is the TCI, 
while for the real-time system it is the TMI, 
since the TCI are unavailable in real time. 
 For the post-real-time estimates, the 
calibration month is a calendar month, and the 
resulting adjustment is applied to all of the 
microwave data for the same calendar month.  
This is not possible in the real- time system, so 
the calibration month is a trailing accumulation 
of 6 pentads, updated at the end of each pentad.  
A pentad is a 5-day period, except when Leap 
Day is included in the pentad that encompasses 
it; there are 73 pentads in each year. 
 
2.2.2  Variable Rain Rate (VAR) IR Estimates 
 The CPC Merged IR data are averaged to 
0.25° resolution and combined into hourly files 
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as ±30 minutes from the nominal time.  The 
amount of imagery delivered to CPC varies 
by satellite operator, but international 
agreements mandate that full coverage is 
provided for the 3-hourly synoptic times 
(00Z, 03Z, …, 21Z).   Histograms of time-
space matched HQ rain rates and IR Tb‘s, 
each represented on the same 3-hourly 0.25° 
grid, are accumulated for a month, and then 
used to create calibration coefficients for IR 
precipitation rate that vary in space.  By 
design, there is no rain when the Tb is 
greater than a threshold value that matches 
the frequency of precipitation in the IR to 
that of the microwave, and increasingly 
colder Tb‘s have increasingly large rain rates.  
The calibration coefficients are then applied 
to the entire hourly IR data set. 
 As with the HQ, the post-real-time 
calibration month is a calendar month, and 
the resulting coefficients are applied to the 
same calendar month of all IR data.  In the 
real-time system the calibration month is a 
trailing accumulation of 6 pentads, updated 
at the end of each pentad. 
 
2.2.3  Combined HQ+VAR Estimates 
 As a first step, we currently combine the 
HQ and VAR estimates with the simplest 
possible scheme, namely the physically-
based HQ estimates are taken “as is” where 
available, and the remaining grid boxes are 
filled with VAR estimates.  This scheme 
provides the “best” local estimate in each 
grid box, at the expense of a time series with 
heterogeneous statistics.  If homogeneous 
statistics are important to the user, either the 
HQ or VAR estimates may be accessed, 
depending on the application. 
 It is highly advantageous to include rain 
gauge data in combination data sets 
(Huffman et al. 1997, among others).  
However, experience shows that on any time 
scale shorter than a month there is not 
sufficient gauge data available and reported 
on consistent observation intervals to 

warrant direct inclusion in a global algorithm.   
We solved this issue in the 1DD by scaling the 
short-period estimates to sum to a monthly 
estimate that includes monthly gauge data.  Here, 
we take a similar approach with the post-real-
time estimates.  All available 3-hourly 
HQ+VAR estimates are summed over a 
calendar month to create a monthly multi-
satellite (MS) product.  The MS and gauge are 
combined as in Huffman et al. (1997) to create a 
post-real-time monthly SG, which is a TRMM 
product in its own right.  Then the field of 
SG/MS ratios is computed (with controls) and 
applied to scale each 3-hourly field in the month.  
Of course, such a gauge adjustment is not 
possible for the real-time system. 
 
3. EXAMPLES 
 Figure 1 provides a snapshot of the merged 
microwave (HQ, top), microwave-calibrated IR 
(VAR, middle), and  combined (HQ+VAR, 
bottom) precipitation estimates for 18Z on 24 
September 2002 from the real-time MPA 
algorithm. The corresponding product identi-
fiers are 3B40RT, 3B41RT, and 3B42RT.  The 
HQ panel shows a typical amount of coverage 
by the F13, F14, and F15 SSM/I’s and the TMI; 
AMSR-E was not yet available and AMSU was 
not yet incorporated.   In contrast, the IR 
coverage is essentially complete for this 
particular observation time.  Visual inspection 
of the two images shows general agreement in 
the location of major precipitation features, even 
though there is considerable variation in the 
small-scale details.  Note the rain systems 
associated with hurricanes Isadore (in the Gulf 
of Mexico) and Lili (in the eastern Caribbean 
Sea).  A mid- latitude low-pressure center and 
trailing front are located north of Hawaii, and 
late-afternoon convection is taking place in 
central Africa. 
 Comparing, the convective systems, such as 
the African thunderstorms and hurricanes tend 
to show local differences, most likely due to the 
delay in time between the occurrence of 
precipitation and the growth of cirrus at the top 
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of the storm. The mid- latitude system shows 
a larger-scale offset, which is believed to 
result from the frontal-scale offset between 
high- level cirrus ahead of the system and 
precipitation, which is located closer to the 
low-pressure center and frontal zone.  Some 
of the offsets shown in the difference field 
could also be due to the 3-hour window for 
HQ data. 
 The individual 3-hourly VAR fields show large 
RMS differences from corresponding HQ fields, but 
they are designed to reproduce the monthly 
histograms of HQ rain rates.  Thus, at least in a 
probabilistic sense the time series of precipitation is 
representative.  The advantage of the 3-hourly 0.25° 
detail is that users are free to tailor averages or 
composites of the data to their own needs. 
 The results of the MPA are best viewed 
as movie loops, which are beyond the scope 
of this preprint.  Readers are urged to visit 
http://trmm.gsfc.nasa.gov and click on the 
button labeled “See More Images, Movies, 
& Accumulation Maps”.  A variety of 
instantaneous and cumulative images and 
movies are available for viewing and 
downloading, with larger movies available 
in lower resolution for users with limited-
bandwidth network connections. 
 
4.  FUTURE DEVELOPMENT 
4.1  MPA 
 As a work in progress, the MPA has a long list of 
issues that the authors would like to address. We will 
characterize the performance of this approach and 
explore differences between the real-time and post-
real-time results.  At the same time, we expect to start 
integrating AMSU precipitation estimates into the 
HQ product.  Thereafter, we will extend the estimates 
to the poles by incorporating fully global 
precipitation estimates based on Television Infrared 
Opera tional Satellite (TIROS) Operational Vertical 
Sounder (TOVS) and Advanced Infrared Sounder 
(AIRS) data.  The best approach to combining the 
HQ and VAR estimates is also a topic for future 
research.  It would be helpful to develop a better IR-
based algorithm so that the combination would not 
have to reconcile the strong fine-scale differences 
that currently exist between HQ and VAR.  Finally, 
the study of precipitation in general needs a succinct 
statistical description of how fine-scale precipitation 

estimates perform over the range of scales up to 
global/monthly. 
 On the instrumentation side there is a concerted effort 
to provide complete 3-hourly microwave data.  Most of 
this effort is focused on the National Aeronautics and 
Space Administration’s proposed Global Precipitation 
Measurement (GPM) Mission.  Besides simply increasing 
the frequency of coverage, it is planned to provide a 
TRMM-like “core” satellite to calibrate all the passive 
microwave estimates on an on-going basis.  We expect a 
permanent role for the geo-IR in filling the inevitable 
gaps in microwave coverage, as well as enabling sub-
3-hourly precipitation estimates at fine spatial scales. 
 
4.2  GPCP Version 3 
 As in the present Version 2, the next version 
of GPCP will continue to need a diversity of 
approaches to provide the longest possible 
record of global precipitation.  In the recent (and 
future) era of plentiful satellite data the trend 
seems to be to make satellite precipitation 
estimates at the finest possible time/space scales 
and average them up to coarser scales as needed.  
This is certainly feasible back to the start of the 
1°x1° 3-hourly IR data in October 1996; further 
extension would depend on either ISCCP DX 
data or a new compilation of global IR data.  At 
a minimum, it should be possible to process the 
entire GPCP IR record back to 1986 at pentad 
temporal resolution. 
 In the earliest, sparse-data era of 1979-1985, 
there are two issues.  First, it would be helpful 
to have finer-scale or even full-resolution data 
sets for the known sensors, including IR, MSU, 
and TOVS.  Second, modern insights should be 
applied to developing algorithms for these early 
data sets with an eye to ensuring consistency 
with the later data.  Such “archaeology” is 
critical for developing the best input to studies 
of possible time trends in the global hydrologic 
cycle. 
 
4.3  Critical Issues 
 To close, we raise three unsolved problems in 
creating combinations.  All three are specific to 
the highly non-normal, non-negative statistical 
properties of precipitation.  First, suppose two 
different satellite algorithms estimate similar 
rain events at a grid box, but at different times.  
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How should these be combined?  Any linear 
combination will damage the statistics, with 
too high a fractional coverage and too low a 
peak rain rate. 
 Second, suppose the actual event is 
similar to the two satellite estimates, but at a 
third time, closer to Satellite 1’s estimated 
time than to Satellite 2’s.  What is the 
appropriate validation statistic?  By eye, one 
would say that 1 is better than 2, but the 
usual root-mean-square error score would be 
equally bad for both.  Some averaging 
would help, but what’s the right amount? 
 Third, the estimation of error for 
instantaneous precipitation estimates is quite 
primitive, particularly in gauging what the 
error might be for grid boxes with an 
estimated precipitation amount of zero.  
What additional information can be used to 
help improve our error estimates? 
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Figure 1.  Example real-time MPA fields for 18Z on 24 September 2002, 
showing the merged microwave estimates (HQ, or 3B40RT; top), the 
microwave-calibrated IR (VAR, or 3B41RT; middle), and the combination 
(HQ+VAR, or 3B42RT; bottom). 
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1.  Introduction 
 
 The objective of this article is to describe the objective techniques used to create the CPC Merged Analysis of 
Precipitation (CMAP, Xie and Arkin 1996)and to discuss the problems in the current version of the technique.  The 
authors expect that comments and advice from the workshop attendees will help the future improvements of the CMAP.      
 
2.  The CMAP Algorithm  
 
 The CPC Merged Analysis of Precipitation (CMAP, Xie and Arkin 1996, 1997a, 1997b) is defined by merging 
seven kinds of individual input data sources. These input data sets include the gauge data (the GPCC gauge-based 
analyses of Rudolf et al. 1994 over land and the atoll gauge data of Morrissey et al. 1995 over ocean),5 sets of satellite 
estimates derived from 1) the IR-based GPI (Arkin and Meisner 1987), 2) OLR-based Precipitation Index (OPI, Xie 
and Arkin 1998), 3) SSM/I scattering-based estimates of Ferraro and mark (1995), 4) SSM/I emission-based estimates 
of Wilheit et al. (1993),  and 5)MSU-based estimates of Spencer (1993). Precipitation fields generated by the 
NCEP/NCAR reanalysis (Kalney et al. 1996) are also utilized as an additional source. 
 
 The merging of the individual input data sources is conducted in two steps.  First, to reduce the random error, 
satellite estimates and reanalysis precipitation fields are combined linearly through the Maximum Likelihood 
Estimation method, in which the linear combination coefficients are inversely proportional to the squares of local 
random error of the individual data sources.  Over global land areas, the individual random error is defined for each 
grid and for each time step (month/pentad) by comparing the data sources with the concurrent gauge-based analysis 
over the surrounding areas.  Over global oceanic areas, it is defined by comparison with atoll gauge data (Morrissey et 
al. 1995) over tropics and by subjective assumptions regarding the error structures over the extra-tropics (Xie and Arkin 
1997a).  
 Since the output of the first step contains bias passed through from the individual input data sources, a second 
step is included to remove it.  For that purpose, the gauge-based analyses are combined with the output of the first step.  
Over land areas, the gauge data and the output of the first step are blended through the method of Reynolds (1988), in 
which the first-step-output and the gauge data are used to define the relative distribution (or “shape”) and the 
magnitude of the precipitation fields, respectively.  Over the oceans, the bias in the first-step-output is ?removed? by 
comparison with the atoll gauge data over the tropics and by subjective assumptions regarding the bias structures over 
the extra -tropics.   
 
 The techniques described above have been applied to construct analyses of monthly and pentad precipitation 
on a 2.5o lat/lon grid over the globe for a 24-year period from 1979 to the present.  Called the monthly and pentad 
CMAP (Xie and Arkin, 1997a and b), these analyses have been used widely for climate analysis, model verifications 
and other applications.  
 
 The CMAP techniques were designed and developed almost 10 years ago to ensure that analyses of 
precipitation are created with complete spatial coverage and reasonable accuracy by merging individual inputs with 
spatial resolution, availability and quality of 1993/1994: 
 
 - Multiple satellite estimates are combined linearly to achieve maximum spatial/temporal coverage with 
reduced random error; 
 
 - Gauge observations were used over both land and ocean to assure stability in the magnitude of the final 
merged analyses throughout the data period;  
 
 - Precipitation fields generated by the NCEP/NCAR reanalysis were included to ensure complete global 
coverage and to complement the reduced quality of satellite estimates over mid- and hi-latitudes; 
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3.  Problems and Potential Improvements  
 
 In recent years, several examinations and comparisons have been conducted for the CMAP datasets.  While 
the data sets have proved to be useful for many applications in climate analysis and model verifications, several 
problems have been reported, most of which are due to the shortcomings of the objective techniques used to create the 
data sets. 
 
3.1 Analyses over land 
 
 Over land areas, the precipitation distribution over regions subject to orographic effects is poorly represented 
in the current CMAP data sets, due to the sparse gauge networks there and lack of appropriate techniques to combine 
information from gauge observations, satellite observations and other sources.   
 
 Work is underway in NOAA/CPC to improve the quality of the merged analyses over the global land areas.  
As a first step, the optimal interpolation technique (OI, Gandin 1963) has been applied to create analyses of global 
monthly precipitation (Chen et al. 2002).  In the OI-based precipitation analyses, the climatology of monthly 
precipitation is first defined for over 17,000 stations using the gauge observations of Global Historical Climatology 
Network (GHCN, NOAA/NCDC) for a 40-year period from1951-1990. Gridded analyses of monthly climatology are 
then defined for the 12 calendar months by interpolating the station climatology and used as the first guess fields in the 
OI.  Monthly precipitation at a grid point is finally defined by adding increments determined from nearby gauge 
observations to the first guess.    
 
 Several tests have been conducted to examine the quality and robustness of the OI technique. Figure 1shows 
the sensitivity test performed for the OI and the interpolation algorithm of Shepard (1968) over the African continent 
for a 21 -year period from 1950 to 1970 during which station observations are available from relatively dense gauge 
networks over the target domain.  The Shepard (1968) technique is used to define the gauge-based analyses of GPCC, 
which determine the magnitude of the CMAP analyses over the land areas.   
 
 4 sets of monthly precipitation analyses were constructed by interpolating all and a subset of the GHCN gauge 
data using the OI and the Shepard (1968)techniques.  Presented in figure 1 are comparison results for the 21-year mean 
precipitation distribution among the4 sets of analyses. Fig.1 1950 -1970 mean precipitation differences between 
analyses defined by interpolating all and a subset of the available gauge data using the OI and the Shepard techniques.   
 
 It is clear from the above figure that small differences are observed between the analyses created by the OI and 
the Shepard (1968) when gauge observations from all stations are used (left-top panel), indicating that the analysis is 
NOT sensitive to the interpolation algorithm used when the gauge network is dense. The 21 -year mean precipitation in 
the OI-based analyses using fewer gauges is almost the same as that in the OI analyses using all gauges (left-bottom 
panel). Substantial differences, however, are observed when the analyses are generated from fewer gauges using the 
interpolation technique of Shepard (1968) (right panels).  These preliminary results show that by making use of the 
climatology defined from dense gauge network, the OI is capable of representing the overall magnitude of precipitation 
fields better than a simple interpolation algorithm like Shepard (1968) in which only station observations available for 
the target month are used.   
 
 Further work is underway to develop an OI-based technique to combine the gauge observations with various 
satellite estimates.   
 
3.2 Analyses over ocean 
 
 Over oceanic areas, uncertainty exists in the magnitude of the CMAP precipitation fields. The current CMAP 
techniques rely too much on the atoll gauge data. In particular, the CMAP procedures that use the atoll gauge data to 
adjust the oceanic bias may add noise to the combined satellite estimates and alias the global oceanic mean 
precipitation by assuming that the relative bias is identical over the entire tropical oceans and decreases gradually 
toward high latitudes.  A comprehensive examination may be needed to check the bias structure for satellite estimates. 
Comparison with water budget calculation from reliable models may give us hints on the overall magnitude of 
precipitation, especially over mid- and high latitudes.  New techniques need to be developed to ensure stable magnitude 
for the oceanic precipitation analyses.  
 
3.3 Analyses over the high latitudes 
 
 Over high latitudes (polar caps), the CMAP analyses are basically defined as the same as the precipitation 
fields generated by the NCEP/NCAR reanalysis.  While the circulation fields are reasonably well produced in the 
current version of the reanalysis, the precipitation fields are not represented as well.  While collection of precipitation 



 

 22 

observations from more gauge stations will help improve the quality of the merged analysis, the final solution to the 
problem may lie in the development of completely new objective analysis techniques that combines the circulation 
fields from models with observations from gauges and satellites. Comments and advices from experts on this topics are 
highly appreciated.   
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1 Introduction 

The assimilation of observations related to cloud and precipitation has become a very important issue for most 
operational weather services including ECMWF. Marécal and Mahfouf (2000) developed a 1D-Var method for 
correcting individual profiles of the model’s control variables in order to decrease the discrepancies that may exist 
between the simulated surface rainfall rates and corresponding retrievals from the Tropical Rainfall Measuring Mission 
Microwave Imager (TRMM/TMI) or from the Special Sensor Microwave/Imager (SSM/I). 
 

Marécal and Mahfouf (2002) also found that an indirect “1D-Var + 4D-Var” assimilation of TMI derived rainfall 
rates could improve the quality of humidity, temperature and wind forecasts in the Tropics. In this approach, the 
background-observation departures on surface rainfall rates are first converted into total column water vapore (TCWV) 
increments thanks to the 1D-Var, and the corresponding TCWV pseudo-observations are then assimilated in the 
4D-Var system. They also showed that this indirect method is more robust than a direct 4D-Var assimilation of the TMI 
rainfall rates, because of some inconsistencies between the inner and outer loops of 4D-Var. The “1D-Var + 4D -Var” 
technique therefore seems more appropriate for performing the future assimilation of such data, as long as these 
inconsistencies are not removed. 
 

Instead of performing the 1D-Var on surface rainfall rates that are derived from multi-channel microwave 
brightness temperatures (BTs) thanks to various algorithms, the 1D-Var calculations could also very well be applied to 
the BTs directly. The multiple sensitivities of the BTs to the vertically integrated amounts of rain water and cloud water 
should provide a stronger constraint on the 1D-Var minimization. Another advantage of this method could result from 
the better knowledge of observation errors on BTs than on derived rainfall rates. 
  

The potential of applying 1D-Var directly to TMI and SSM/I microwave brightness temperatures has been 
investigated and its results have been compared with the 1D-Var on derived rainfall rates. The two methods will be 
referred to as 1D/BT and 1D/RR hereafter. In addition, “1D-Var + 4D-Var” assimilation experiments have been run 
with the most up-to-date version of ECMWF’s forecasting system in order to assess the impact of TMI or SSM/I 
observations in precipitation areas on 4D-Var analyses and on subsequent forecasts. 

2 Modifications of ECMWF’s operational convection scheme   

Prior to all experiments, some modifications were made to ECMWF’s parameterizations of convection and large-
scale condensational processes. These changes were expected to increase the level of physical realism of the 
parameterizations with respect to the very simplified ones used in current 4D -Var. At the same time, the modified 
schemes were designed such as to behave more linearly when compared to the highly non-linear operational schemes 
originally designed by Tiedtke (1989, 1993). 
  

The modified convection scheme is still based on the mass-flux approach, but it now features uncoupled equations 
for the mass-flux and for the updraft characteristics. The total entrainment rate (turbulent and organized) is expressed as 
1/(2z), where z denotes the height above the updraft starting level, according to Siebesma and Jakob’s recent ideas 
(personal communication). Detrainment is assumed to be equal to the entrainment rate, except close to cloud top where 
an enhanced constant value is applied. The vertical evolution of the updraft vertical velocity is parameterized as in 
Simpson and Wiggert (1969), and the closure of the scheme is based on the relaxation of convective available potential 
energy for all types of convection. 
 

Tompkins and Janisková (personal communication) have recently developed a new simplified statistical 
diagnostic cloud-scheme that includes precipitation generation according to Sundqvist (1989) and a new formulation of 
precipitation evaporation based on the subgrid scale distribution of total water. 
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3 1D-Var experiments on TMI and SSM/I observations 

3.1 Description of the 1D-Var method 

The purpose of the unidimensional variational method (1D -Var) is to determine increments that need to be 
added to the model’s control variables so that the difference between a selected output quantity of the model and its 
observed equivalent becomes minimal in a least-square sense. In the present study, two control variables are considered 
in the model: temperature and specific humidity. 
  

The selected output quantity to be optimized is either the surface rainfall rate (like in Marécal and Mahfouf 
2000) or the multi-channel microwave brightness temperatures. Surface rainfall rate is an output from the model 
convective and large-scale condensation parameterizations and can also be derived from observed microwave 
brightness temperatures thanks to a proper retrieval algorithm (see section 2). On the other hand, brightness 
temperatures can be simulated applying first the parameterizations of moist processes to the model’s control variables 
and then a microwave radiative transfer model. 
  

The 1D -Var method searches for the model’s state vector x that minimizes the following functional: 
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where xb is the background model state, and H(x) is the non-linear observation operator which permits to convert the 
model’s variables into either surface rainfall rates or microwave brightness temperatures. Yobs denotes the 
corresponding observed quantity and σobs is the standard deviation of the observation errors. Matrix B contains the 
model’s background error covariances. The result of the 1D-Var is therefore a linear combination of the background 
term and of the observation term, weighted by the inverse of their respective error statistics. 
 

The minimization of J(x) is performed thanks to the quasi-Newton descent algorithm (M1QN3) developed by 
Gilbert and Lemaréchal (1989). It involves the jacobian matrix of the nonlinear observation operator H(x) which 
consists of the modified parameterizations of convection and of large-scale condensation described in section 2. In the 
case of 1D/BT, the minimization also involves the forward non-linear version and the adjoint version of the radiative 
transfer model designed by Bauer (2002) and Moreau et al. (2002), which takes into account the diffusion of 
microwave radiation by precipitation. 

3.2 Set-up of the 1D-Var experiments 

1D-Var experiments have been run on three recent meteorological events: Super-typhoon MITAG near the 
Philippines at 1200 UTC 5 March 2002, tropical cyclone ZOE close to the Fiji Islands at 1200 UTC 26 December 2002, 
and an extra-tropical front in the North Atlantic at 1200 UTC 9 January 2002. TMI observations have been used for 
MITAG and ZOE, SSM/I ones in the mid-latitude frontal case. 
 

In 1D/RR, various algorithms have been tested for retrieving surface rainfall amounts from the multi-channel 
microwave brightness temperatures observed by either TMI or SSM/I: 2A12 -v5 (Kummerow et al. 1996), PATER 
(Bauer 2002), Ferraro (1996) and Bauer-Schluessel (1993). The ra infall retrievals at instrument resolution were then 
averaged onto the Gaussian grid of the ECMWF model which corresponds to a T511 spectral truncation (grid point 
resolution of about 40 km), so that observation and model points became co-located. The retrieval errors for PATER 
have been estimated as in Bauer et al. (2002), while the errors derived by L’Ecuyer and Stephens (2002) have been 
applied to 2A12-v5 retrievals. For the two other algorithms, a constant error of 50% of the rainfall rate has been 
assumed. 
 

In 1D/BT on TMI observations, the minimization has been applied to seven channels: 10 GHz (V/H), 19 GHz 
(V/H), 22 GHz (V) and 37 GHz (V/H), where V and H denote the vertical and horizontal polarizations. With SSM/I 
data, only the 19 GHz (V/H), 22 GHz (V) and 37 GHz (V/H) channels are available. Increasing the number of 
microwave channels used in the 1D-Var is expected to be beneficial because of their differing sensitivities to 
temperature, water vapour, cloud water and precipitation. The observed BT at each model grid point has been set equal 
to its value at the closest TMI pixel, in each microwave channel. For BTs, σobs has been set to 3 K (resp. 6 K) for the 
vertically (resp. horizontally) polarized channels. This is assumed to account for both the instrumental errors and the 
errors of the radiative transfer model. 
 

The model’s background fields that enter the 1D-Var have been obtained from 12-hour T511 forecasts with the 
ECMWF model.  The covariance matrix of background errors B used in the 1D-Var is taken from the operational 
ECMWF 4D-Var system (Rabier et al. 1997). The temperature and specific humidity errors are assumed to be 
uncorrelated. 
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3.3 Summary of the 1D-Var results 

As an illustration, Fig.1 displays the results of the 1D-Var calculations on super-typhoon MITAG: the model’s 
background surface rainfall rates are shown in panel (a). The observed rainfall rates as retrieved with the 2A12-v5 
algorithm from the TMI BTs appear in panel (b). “Analysed” surface rainfall rates can be simulated using the 
parameterizations of moist processes after adding the 1D-Var increments to the model’s background profiles of 
temperature and specific humidity. These analysed rainfall rates are shown in panel (c) for 1D/BT and (d) for 1D/RR. 
Fig. 2 shows the TCWV background field and the corresponding increments from 1D/RR on PATER observations and 
from 1D/BT.  
 

 
 

Fig.1. Surface rain rates from model background (a) for the case of super -typhoon MITAG at 1200 
UTC 5 March 2002. Corresponding TMI observations from the PATER algorithm (b), and 
corresponding analysed rainfall rates from 1D/BT (c) and from 1D/RR (d). Units are in mm h-1. 
 

 
 

Fig.2. Background TCWV (a) for the case of super-typhoon MITAG at 1200 UTC 5 March 2002. 
TCWV increments from 1D/BT (b) and from 1D/RR on PATER surface rainfall rates (c). Units are 

in kg m -2. 
 

Fig.1 clearly demonstrates that both 1D/RR and 1D/BT are able to correct the initial temperature and specific 
humidity profiles in such way that the model gets closer to the observations. It is noteworthy that in the case of 1D/BT 
the agreement is all the more remarkable as the PATER rainfall rates provide an independent source of validation. The 
tighter initial screening of points applied in 1D/BT to save computational time explains why the light rain area around 
the storm is not modified in Fig.1.c. It should also be recalled here that 1D/RR only works at points where the jacobian 
matrix R  is non-zero, that is only at rainy points of the model’s background. Fig.2 points out the similarity  between the 
patterns of the TCWV increments obtained with the two 1D-Var methods. However, 1D/BT systematically produces 
increments with a stronger magnitude than 1D/RR, as a result of the multiple sensitivities of microwave brightness 
temperatures to precipitation but also to cloud condensate and water vapour. All these findings have been confirmed in 
the two other studied cases (not shown), as well as for the different rainfall rate retrieval algorithms tested. 

a 

c d 

a b c 
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By looking at the other cases, it has also been evidenced that 1D/RR performs better at points where the 
background precipitation originates from the large-scale condensation scheme and not from the convective 
parameterization which involves more non-linearities. This was clearly seen in the case of tropical cyclone ZOE for 
which 1D/BT was more successful than 1D/RR in the presence of intense deep convection in the model. 
  

A statistical cross -comparison of 1D/RR with 1D/BT has pointed out that the reduction of the model-observation 
errors on BTs with 1D/RR is more systematic than the reduction of the model-observation errors on rainfall rates with 
1D/BT. Furthermore, the 1D-Var outputs have been validated against independent measurements from the TRMM 
precipitation radar (both in terms of rainfall rates and reflectivities) and from the NOAA AMSU -B instrument. 

4 “1D-Var + 4D-Var” assimilation of TMI observations in rainy areas 

 After running 1D/RR and 1D/BT on TMI observations over the region of tropical cyclone ZOE, pseudo-
observations of TCWV have been obtained by vertical integration of the 1D -Var increments of specific humidity and 
adding the result to the background TCWV. These TCWV pseudo-observations have been assimilated inside 
ECMWF’s 4D-Var in order to study their impact on 4D-Var analyses and on subsequent forecasts. Three experiments 
have been run: a “control” 4D-Var assimilation of all available routinely used observations, a 4D-Var assimilation of 
the same data plus the 1D/RR TCWV pseudo-observations, and a similar experiment with 1D/BT TCWV pseudo-
observations. 

  
These tests have permitted to find 1) that 4D-Var can properly handle the 1D-Var/TMI TCWV pseudo-

observations, 2) that significant increments can be seen on the humidity field but also on the dynamics in the vicinity of 
the storm, and 3) that the amplitude of these increments remain significant in the forecasts started from the new 
analyses. These findings confirm earlier results from Marécal and Mahfouf (2000) obtained with an older set-up of 
ECMWF’s model. 

 
 

 
    

Fig.3. Differences between 12-hour forecasts started from the 4D-Var analysis with TMI 
observations and from the control 4D-Var analysis, when using 1D/RR (a) and 1D/BT (b). 
Differences of TCWV are displayed in colors and differences of 850 hPa winds are plotted as 
arrows. At this time (0000 UTC 27 December 2002), tropical cyclone ZOE is centered at the 
middle of the plotted domain. Units for TCWV are in kg m-2, while for wind differences the longest 
arrow corresponds to 25 m s-1. 

 
As an illustration, Fig.3 displays differences of TCWV and 850 hPa winds between 12-hour forecasts issued from 

the new analysis and from the control analysis, when using 1D/RR (a) and 1D/BT (b) TCWV pseudo-observations.  
 
In both cases, the impact on the TCWV and wind fields is still large after 12-hours, but is even stronger when 

using 1D/BT, despite a smaller number of TCWV observations because of differences in the 1D-Var screening. This is 
due to the fact that the 4D-Var analysis increments (not shown) are already larger when using 1D/BT. 

a b 
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In addition, Fig. 4 illustrates the clear improvement of the track forecast for tropical cyclone ZOE in the 
“1D/RR+4D-Var” and “1D/BT +4D-Var” experiments compared to the control experiment and to observations. 
 

 
 
Fig.4. Comparison of the tracks of tropical cyclone ZOE as from observations (squares), from 
control 4D-Var (triangles), from ‘1D/TMI-RR + 4D-Var’ (stars), and from ‘1D/TMI-BT + 4D-Var’ 
(diamonds). Forecast times in hours are indicated along the observed track, and similar colors 
correspond to similar forecast times in the experiments. Time 0 corresponds to the analysis. 

 
5 Conclusions 
 1D-Var experiments based on retrieved surface rainfall rates as observed from TMI and SSM/I have been 
compared to 1D-Var experiments directly performed on the TMI and SSM/I brightness temperatures, for three tropical 
and mid -latitude cases. These runs include simplified versions of ECMWF’s operational parameterizations of moist 
processes. Both 1D-Var methods are successful in producing reasonable and consistent temperature and specific 
humidity increments that permit to correct either the model’s surface rainfall rates or the simulated BTs towards their 
observed equivalents. Besides, specific humidity increments dominate and are generally larger with 1D/BT than with 
1D/RR. 

 
 The 1D-Var on rainfall rates has the main advantage of being computationally cheaper than the 1D-Var on BTs. 
The two major drawbacks of the former lies in its total inefficiency wherever the background rainfall rate is zero and in 
the necessity of c hoosing the proper retrieval algorithm for converting microwave BTs into surface rainfall rates. On the 
other hand, two advantages of the brightness temperature approach can be listed: firstly, the error statistics are better 
known for BTs than for derived surface rain rates that depend on the retrieval algorithm used. Secondly, the fact that 
microwave BTs are sensitive not only to precipitation but also to water vapour and cloud water, make it possible to 
correct the model’s control variables outside non-rainy areas of the background. 

  
 Preliminary 4D-Var assimilation of pseudo-observations of TCWV obtained from the 1D-Var on TMI rainfall rates 
or BTs in rainy areas around tropical cyclone ZOE have shown that these extra observations can lead to significant 
thermodynamic and dynamical changes in the 4D-Var analyses and the subsequent forecasts. The changes in 4D-Var 
obtained with 1D/BT TCWV observations are clearly larger than with 1D/RR. A clear improvement is also found in the 
track forecast of the studied storm. 

  
 Global monthly experiments currently in progress will help determine whether the assimilation of TMI and SSM/I 
observations can lead to a systematic improvement of both analyses and forecast scores. 
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1. Introduction 
 

Precipitation estimates produced by global data assimilation systems without rainfall data differ significantly 
from each other and from observational estimates such as the combined satellite -gauge rainfall from the Global 
Precipitation Climatology Project (GPCP, Huffman et al. 1997). The discrepancies are especially pronounced in the 
Tropics, where conventional observations are sparse and analyses are strongly influenced by parameterized diabatic 
processes in global models (Trenberth and Olson 1988). In terms of monthly-mean spatially-averaged rain rates at 
2.5

o 
x 2.5

o
 horizontal resolution, estimates from global re-analyses can deviate locally from GPCP rain rates by more 

than 10 mm day
-1

, much greater than the estimated uncertainty of 10-20% in GPCP analyses. Since 1 mm day
-1

 of rain 
rate is associated with a latent heating flux of roughly 30 W m

-2
, uncertainties on the order of 10 mm day

-1
 are too large 

to be useful in closing the global energy budget (For comparison, the accuracy goal set by the GEWEX radiation panel 
for the monthly-mean net radiative fluxes is ~ 5 W m

-2
 at 200 km resolution by 2010). Assimilation of precipitation 

observations is one way to improve the utility of global analyses for understanding the water and energy cycle. 
 

 Current operational global weather forecas t systems typically assimilate observations using a multi-
dimensional variational scheme to optimize the initial condition at the beginning of an analysis window. Such schemes 
assume that forecast errors arise from uncertainties in the initial condition rather than deficiencies in the forecast model. 
For precipitation assimilation, this assumption needs to be re -examined since rainfall in global models is derived from 
parameterized moist processes with simplifying approximations, which can have significant systematic errors (Randall 
et al. 2003). As model biases can lead to poor forecasts even with perfect initial conditions, the influence of systematic 
model errors needs to be considered in assimilating precipitation information effectively in the presence of model biases. 
Additionally, one must also consider such issues as the temporal, spatial, and physical compatibility between the model-
predicted rain from parameterized physics with implicit quasi-equilibrium assumptions and the nearly instantaneous 
satellite measurements. 
 
2. Variational continuous assimilation of precipitation information 
 
 At NASA Goddard, we have been exploring rainfall assimilation using prognostic tendency corrections as a 
control variable within the framework of variational continuous assimilation (VCA, Derber 1989) to compensate for 
model deficiencies. Since the model-predicted precipitation is diagnostically linked to latent heating and moisture 
tendencies, a VCA -type of approach offers a natural framework for assimilating rainfall information using 
moisture/temperature tendency corrections. As a test of the effectiveness of such a strategy, we developed a  "1+1" 
dimensional (1+1D) variational algorithm to assimilate 6-h accumulated TMI and SSM/I surface rain rates in the 
Goddard Eart h Observing System (GEOS) global data assimilation system (DAS). The scheme minimizes the 
functional: 
 
  J(x) = (x)T Q-1 (x) + { H(x) - yo }T R-1 { H(x) - yo }       (1) 
 
where yo and H(x) are logarithms of the observed and model rainfall, respectively (the logarithmic singularity is 
removed with a rain threshold of 0.01 mm day

-1
), x is the temperature/moisture tendency correction within a 6-h  

assimilation
 
window. Q is the error covariance for a prior estimate of the tendency error, x, which is not known a priori. 

The working assumption is that Q closely follows the error covariance of the background pseudo-relative humidity, 
which is temperature-dependent through the saturation humidity. R is the "observation" error covariance parameterized 
in terms of variance of relative observation errors in TMI rainrate retrievals. Based on the work of Bauer et al. (2002) 
and Bell et al. (1990), the standard deviation for relative errors is taken to be 15-30% for 6-h rain averaged to 1

o
 x 1

o
 

model resolution. The observation operator, H(x) , is based on a 6-h integration of a column model of the GEOS moist 
physics with large-scale forcing estimated from a 3-h assimilation of the full GEOS DAS, as described in Hou et al. 
(2000). The minimization is obtained using a quasi-Newton method, with the gradient of J updated at each iteration. 
See Hou et al. (2003) for further details. 
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The 1+1D VCA scheme differs from nudging or physical initialization in that it is a statistical analysis within 

the optimal estimation framework. The VCA scheme as implemented in the GEOS DAS effectively operates as an 
online forecast bias estimation and correction for precipitation and moisture every 6 hours. In its generalization to four 
dimensions, the VCA scheme is similar to 4DVAR schemes with the forecast model as a weak constraint (Zupanski et 
al. 2002). However, as a technique for precipitation estimation, the VCA scheme differs from others in one important 
aspect: The VCA-based precipitation estimate is not a forecast product but is determined by the 6-h rain accumulation 
from a continuous 4D data assimilation constrained by precipitation observations. 
 
3. Impact on GEOS analysis and forecast 
 
 Results from GEOS DAS experiments show that assimilating TMI and SSM/I surface rainrates using the 1+1D 
VCA scheme improves not only precipitation and moisture fields in the analysis but also related climate parameters 
such as clouds and atmospheric radiation fluxes, as verified against the top-of-the-atmosphere radiation measurements 
from Clouds and the Earth’s Radiation Energy System (CERES) sensors and brightness temperatures for moisture -
sensitive channels of High-resolution Infrared Radiation Sounder (HIRS). Model forecast experiments show that the 
improved analyses also lead to better 5-day track forecasts and quantitative precipitation forecast (QPF) threat scores in 
eight case studies of Hurricane Bonnie and Hurricane Floyd, as illustrated in Figure 1. Despite the limited number of 
forecasts, these results have been shown to be robust by varying the weights assigned to TMI and SSM/I rain rates in 
the analysis used to initialize the forecasts. As more rainfall information is retained in the analysis, there is a systematic 
increase in forecast skills, confirming that the improvements seen in Fig. 1 reflect the use of rainfall data in the initial 
condition. 
 

 

 
Figure 1. Improved storm track prediction and QPF Equitable Threat Scores for a 5-day forecast of Hurricane Bonnie 
initialized at 12:00 on 20 August 1998. Left panel: Red is the best track analysis from NOAA. Green is the control 
forecast from 1

o
 x 1

o
 GEOS analysis without rainfall data. Blue is the forecast from GEOS analysis with TMI and 

SSM/I surface rain rates. Right panel: QPF threat scores for the control experiment (blue) and for the rainfall 
assimilation experiment (red). 

 
Currently, we are exploring ways to assimilate TMI-retrieved convective and stratiform latent heating profiles 

to seek further improvements. One scheme under testing is to assimilate the latent heating profiles by optimizing 
selected parameters in moist physics schemes within the general framework of model parameter estimation. Preliminary 
experiments show that this approach leads to comparable improvements in surface rain analyses as well as improved 
vertical latent heatin g and moistening profiles. 
 
4. Prospects and recommendations 
 
 Our study suggests that precipitation assimilation can significantly improve the quality of global analyses. 
In the coming years, more satellite rain products will become available from operational and research satellites, 
culminating to a constellation of 8 or more satellites with the proposed Global Precipitation Measurement (GPM) 
mission in 2007. Realizing the full potential of these observations in data assimilation will require continued advances 
in satellite algorithms, error characterization, model physics, and assimilation techniques. As we continue to advance in 
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these areas, precipitation assimilation provides the means by which we can ultimately obtain an optimal, dynamically 
consistent precipitation analysis. In a wide range of applications and physical process studies, an assimilated global 
analysis that replicates the observed space-time variability in precipitation and its coupling to other physical 
components is essential for understanding the role of water in the climate and climate feedback processes. The GPCP 
community with experts in rainfall observations and analyses can play an important role in rainfall validation and error 
estimation. We recommend that GPCP extend its focus beyond observation-based precipitation analyses to support the 
goal of producing physically consistent precipitation analyses using both observations and model information. 
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1. Rainfall Assimilation in the Mesoscale Model 

The Met Office introduced the assimilation of radar-derived rainfall data into its operational 
mesoscale model (MES) in April 1996.  The model currently has a grid -length of approximately 
12km and 38 vertical levels.  The assimilation technique used is known as Latent Heat Nudging 
(Jones and Macpherson, 1997). The basic idea behind LHN is that since relatively little moisture is 
stored in clouds, the precipitation rate is proportional to the vertically integrated condensation 
(latent heating) rate.  Also, latent heating is important for the development and forcing of 
precipitating systems, so if the correct latent heating can be supplied to the model, the forecast will 
improve.  Latent heating acts as a source term in the thermodynamic equation influencing the 
adjustment of the vertical velocity.  If we know (or can specify) the vertical structure of latent 
heating, then we can scale its vertical integral by the ratio of observed precipitation rate to model 
precipitation rate, and then add a temperature increment to the model consistent with this scaling.  
One can also add moisture increments to try and produce saturation in raining areas. 
 
For the moisture component of LHN, we apply the Moisture Observation Pre-processing System 
(MOPS), which blends satellite imagery and surface cloud reports with radar imagery to produce a 
3-dimensional cloud analysis for assimilation by the MES (Macpherson et al., 1996). The cloud 
fraction data are converted into humidity increments through a relationship derived from the model 
cloud scheme. 
 
The surface precipitation rate estimates are supplied by the radar analysis step of the 'Nimrod' 
nowcasting system (Golding, 1998).  The data have been through anaprop removal, bright band 
correction, orographic enhancement and the system incorporates weekly calibration against rain 
gauges.  The rainfall data are prepared on a 5km grid, then averaged to 15km and interpolated to the 
model's 12km grid.  At each model timestep, the observed rain rate and the latest model forecast 
rain rate are combined to derive a target analysed rain rate, towards which the model is nudged. 
 
In the LHN algorithm, the vertical structure of latent heating rates is taken from the model's latest 
estimated heating distribution, and the scaling by precipitation rates is applied, as described above. 
If the model is producing no rain where rain is observed, then a search is conducted around that 
grid-point to find a point where the model is raining, and the heating profile from that point is used 
to calculate increments at the point where it is desired to introduce rain. As reported by Jones and 
Macpherson (1997), LHN was found on average to improve precipitation forecasts in the first 6-9 
hours of the forecast, with little impact beyond that time.  Frontal cases showed more beneficial 
impact than convective cases. 
 
 
 
 



 

 33  

2. Impact Studies and later developments  
 
In 1997, more extended impact studies of the LHN technique were conducted. These experiments 
revealed that on a monthly timescale, impact from LHN can be detected objectively up to t+12 in 
some months, with a very marked benefit in the first 6 hours, while in other months LHN may give 
only a neutral signal.  Figure 1 shows results for a period in July/August 1997 when LHN of radar 
data gave significant benefit.  The improvements in ETS are appreciable relative to those noted in 
annual means for this score.  By contrast, results for a period covering June 1997 (not shown) were 
close to neutral. The study also revealed an example of a longer lasting forecast impact from LHN 
(Figure 2), this time at t+15 hours.  The situation involved a rainband which formed near the south 
of the model domain and moved slowly northwards as it developed, so the signal from initial 
conditions was not swept out of the domain as quickly as with a more rapidly moving system in a 
westerly flow. 
 
The next development in the rainfall assimilation system, introduced in 1999, was an  increase in 
the frequency of radar data assimilated from 3-hourly to hourly.  The benefit of this enhancement 
was mainly seen in the first 6 hours of the forecast, in situations where the rainfall field was 
evolving more rapidly.  For more details, see Macpherson (2001). 
 
The initial treatment of the error characteristics of radar based surface precipitation rate estimates 
was very simple.  Relative to the model, we assumed the radar data to be of high quality within 
100km of the nearest radar and of diminishing quality out to maximum range around 200km. 
However, more fundamentally, surface precipitation rate estimates are found to be less accurate 
when the radar beam is above the freezing level.  This is primarily due to the difficulty in 
extrapolating the observed reflectivity above the freezing level to the reflectivity that would be 
observed at ground level, which in turn is used to determine the precipitation rate at the ground.  
Therefore, it is desirable to have a quality measure which takes account of radar beam geometry and 
freezing level height.  This has now been developed within the radar analysis step of the Nimrod 
nowcasting system, as reported by Gibson et al.(2000). 
 
Figure 1: Impact of assimilating radar rainfall data, averaged over 25 cases of widespread rain in July 
and August 1997.  Results give Equitable Threat Score, ETS (%) for mesoscale model forecasts of 3-hour 
precipitation accumulation up to the forecast time shown.  The model is verified against 3-hour 
accumulations derived from the UK radar network, for thresholds of 0.1, 0.5 and 1.0mm in 3 hours.  Solid 
line is for forecasts including assimilation of radar data, dashed line for forecasts without radar data. 
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Figure 2:   An unusually long 
lasting forecast impact of radar rain 
rate assimilation in the Met Office 
mesoscale model.  Bottom frame 
shows radar picture for 03 UTC on 
12th June 1997, with northward 
moving rainband over central 
England.  Top left frame shows 
operational precipitation rate 
forecast at t+15 hours.  Top right 
frame is from a run with NO 
assimilation of radar data. 

 

Examples of significant impact such as Figure 2 provided encouragement to extend the coverage of 
radar data, especially to the south.  In summer 1998, the model southern boundary was extended to 
~44°N and in late 1999 work began on integrating radar data from other European nations into the 
UK radar composite for mesoscale data assimilation.  Early in 2003, the coverage achieved is as 
shown in Figure 3. 
 
Future plans are to develop a 4-dimensional variational assimilation of rainfall data to replace the 
latent heat nudging scheme.  
 
3. COST-717 collaboration within Europe  
 
The above work has been stimulated by collaboration within the COST-717 Action entitled: 'Use of 
Radar Observations in Hydrological and NWP Models' (Rossa, 2000), especially Working Group 3 
(Macpherson, 2000) with its focus on assimilation of radar data into NWP models.  Other working 
groups are focused on use in hydrological models, and on applications of radar data to model 
validation and verification, so aiding parametrization development. The action's web site with 
reports and documentation is at:  www.smhi.se/cost717 
 
Several European nations are now testing precipitation assimilation in high resolution models, and 
COST-717 is working to help define the quality requirements on radar data for that purpose.  It is 
collaborating with the OPERA group on operational exchange of radar data within Europe, seeking 
to raise awareness that the NWP community is destined to be a primary customer for quantitative 
real-time precipitation data from radar networks. 
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Figure 3:  Operational coverage of radar data assimilated by the 
Met Office mesoscale model in spring 2003. 
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Introduction 
 
Currently, rainfall retrieval over ocean from passive microwave satellite observations represents the best 
compromise between estimation accuracy and spatial data coverage. Infrared data is available with higher 
temporal frequency from geostationary satellites but the link of top-of-the-atmosphere infrared emission to 
near-surface rainfall is very indirect. Therefore, all algorithms have to exploit the space-time relation 
between cloud cover / cloud top height and areal mean rainfall. With TRMM 1  the first spaceborne 
precipitation radar became available and provides the most detailed information on precipitation vertical 
structure and quantity over both land and ocean up to date.  
 
The accuracy of precipitation estimates from satellite observations has been the target of numerous 
intercomparison studies (Ebert and Manton 1998, Smith et al. 1998, Adler et al. 2001) which were in itiated 
to evaluate the large number of algorithms that had emerged with the availability of the oper ational SSM/I2 
series. As a consequence, permanent and globally coordinated activities have been founded such as the 
GPCP3, the TRMM validation field campaigns, and the WMO-IPWG4.  
 
TRMM has also encouraged several data assimilation efforts (e.g. Marécal and Mahfouf 2002, Hou et al. 
2002). In data assimilation, the proper definition of errors associated with the assim ilated product is crucial 
because it determines the weight that is put on the observation in the analysis. Thus recent algorithm 
development efforts have made the error definition one of their key issues (Kummerow et al. 2001). 
 
This paper presents two approaches for the estimation of rainfall retrieval errors as well as an example of the 
influence of data with different error characteristics on data assimilation. The latter is partic ularly important 
if, for example, data coverage has to be traded-off against data quality which becomes an issue in the 
preparation of GPM5. In this paper, retrieval errors are calculated using the definition of random errors 
inherent to the retrieval method itself and by the validation of retrieved profiles with independent data. 
Secondly, the issue of data quality/coverage in data assimilation is illustrated by comparing rainfall retrievals 
from TMI6 vs. SSM/I data in an assimilation experiment over one month.  
 
Retrieval algorithm 
 
Methodology 
Bayes’ formulation of the ‘a posteriori’ probability, P(x|y), that state x occurs and observation y can be made 
for non-linear problem is: 

[ ] [ ] [ ] [ ]aa
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1  Tropical Rainfall Measuring Mission. 
2  Special Sensor Microwave / Imager. 
3  Global Precipitation Climatology Project. 
4  World Meteorological Organisation - International Precipitation Working Group. 
5  Global Precipitation Mission. 
6  TRMM Microwave Imager. 
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(e.g. Rodgers 2000).  F(x) denotes the simulated observation with observation operator F applied to state x,  
and S  denotes the error covariance matrix of observation/simulation (index ‘e’) and ‘a priori’ state (index 
‘a’). Eq. (1) assumes that some ‘a priori’ knowledge exists and that the errors have Gaussian distributions. In 
the presence of clouds and precipitation the probability distribution P(x|y) is not very well described by a 
Gaussian distribution and the ‘a priori’ knowledge is difficult to obtain in a stand-alone algorithm so that the 
‘expected’ value of E(x) may be taken as a solution to the optimum estimate of x that is the mean state 
averaged over the probability distribution: 

∫ ∫= xyxxx dPE )|(...)(     (2) 
Using Eq. (1) and assuming that the two terms on the right hand side are uncorrelated: 
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P(x) is the known distribution of x-xa. Assuming that a database - say from combined cloud-radiative transfer 
model simulations - exists that represents sufficiently well the true distribution of x, the integral may be 
replaced by a summation over all x i contained in the database: 
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with normalization factor: 
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This form is used in several algorithms for the retrieval of precipitation from passive microwave 
observations (e.g. Kummerow et al. 1996, Olson et al. 1996, Bauer et al. 2001).  
Error estimation 
In a similar way, the retrieval uncertainty can be estimated: 

[ ][ ]{ }TEEEE )()()'( xxxxx −−=    (6) 
Apart from numerous studies on algorithm validation by independent observations from rain gauges or 
surface radars, only a few have dealt with the error estimation from error modelling. Physical algorithm 
development usually involves the combined modelling of clouds, precipitation, and radiative transfer also 
accounting for effects such as radiometer viewing geometry and varying spatial resolution per channel. 
Therefore error modelling requires the estimation of individual error sources and their propagation through 
the entire mode lling chain. At present, only this combined error has been analyzed in terms of contributions 
from signal ambiguity to the total error (Bauer 2001) or the insuff icient representation of the natural 
variability in the retrieval database vs. modelling errors (L’Ecuyer and Stephens 2002). 
 
Both Bauer et al. (2002) and L’Ecuyer and Stephens (2002) have quantified the gross functional dependence 
of rainfall retrieval errors as a function of rain rate on the basis of Eq. (6) and different datasets for algorithm 
training and application. Figure 1 shows this dependence for three different alg orithms (PATER, BAMPR, 
2A12 V5.1) which employ Eq. (4) but use different simulation databases and quality control checks. The 
solid lines represent the standard deviation between radiometer and precipitation radar (PR) estimates and 
the comparison suggests that the errors represented by Eq. (6) are quite realistic even though they only cover 
the random error component. 
 
All algorithms have in common that the relative errors are fairly large at low rain rates (100-200%) because 
of the increasing noise contribution from surface emission and atmospheric/cloud background emission. In 
the region of highest sensitivity of microwave window channels with respect to precipit ation (~1-20 mm/h), 
errors decrease to 50% or even less. Depending on whether the algorithm uses higher frequency channels 
(Figure 1b, c) and the represent ativeness of the database, relative errors may increase again for larger rain 
amounts.  
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Figure 1: Bayesian retrieval errors from as a function of rain rate at product resolution for PATER (a), BAMPR (b), and 2A12 V5.1 (c). 
Superimposed are lines denoting average differences between PATER and PR 
(a) and 2A12 V5.1 and PR (c) retrievals, respectively [for algorithm details 
see Bauer et al. (2002)]. 

Application example 
The retrieval algorithm [Eq. (4)] was implemented to 
demonstrate the potential of microwave temperature-
sounding channels for precipitation profile retrieval. The 
algorithm uses a database from combined cloud-
radiative transfer model simulations of hurricane Bonnie 
over the Western Carribean Sea. The cyclone was also 
well observed during the field campaign CAMEX-37 on 
August 26, 1998. The retrieval method was applied to 
airborne observations with the NAST-M 8  radiometer 
onboard the ER-2 aircraft. This radiometer has sounding 
channels in two oxygen absorption complexes near 
50-57 GHz and 118.75 GHz (Blackwell et al. 2001). The 
channels in both bands are collocated in such a way that 
for a channel near 50 GHz there is a channel near 
118 GHz with a similar clear-sky weighting function. 
Clouds and precipitation can be sensed by their 
differential absorption and scattering features in both 
bands. Once precipitation profiles are retrieved,  radar 
reflectivities can be simulated and compared to EDOP9 
observations from the same aircraft. Therefore the 
retrieval accuracy can be estimated from the theoret ical 
retrieval error given by Eq. (6) and by a comparison 

with radar reflectivities (Bauer and Mugnai 2003). The 
latter also leads to an estimate of systematic errors. 
 
Several overpasses over hurricane Bonnie were carried out 
by the NASA ER-2 aircraft on August 26. The payload of 
the ER-2 aircraft also contained the ER-2 Doppler (EDOP) 
radar (Heymsfield et al. 1996). The EDOP radar is a 
two-antenna 9.6 GHz Doppler radar with one antenna 
pointing in nadir direction and the other pointing forward. 
In this study only the reflectivities from the nadir beam are 
used for validating the retrievals from NAST-M nadir 
observations.  
 
Figure 2: Retrieval errors as a function of rain rates from aircraft 
data (> 200 000 data points). 
 
 
A graph similar to Figure 1 was produced from the aircraft 

retrievals (Figure 2). While for rain rates > 5 mm/h, the errors match those from the satellite retrievals fairly 
well, the errors are much smaller below 5 mm/h. A possible explanation is the difference of spatial 
resolutions. This is because the aircraft data resolves details at 2 km scales while the satellite r etrievals  suffer 

                                                 
7 Convection and Moisture Experiment. 
8 National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Aircraft Sounder Testbed-Microwave 

(NAST-M). 
9 ER-2 Doppler radar  
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from beam-filling errors that is the mismatch between spatially averaged high-resolution retrievals and 
retrievals from spatially averaged observations. 
 
The retrieved profiles are converted to synthetic radar reflectivity profiles to be compared to the observed 
profiles. The advantage of this approach over the comparison of rain rates is that the utilization of a radar 

retrieval algorithm with different assumptions on particle 
size distributions and optical properties is avoided. The 
comparison of reflectivities employs the same radiative 
transfer model that was used for the generation of the 
retrieval database. Therefore, attenuated reflectivities at any 
given frequency can easily be calculated and compared to 
the observations. The microwave retrievals were carried out 
for 2, 8, and 16 channels (at 50-57 and at 118 GHz) to test 
the contribution of channel combinations to retrieval 
accuracy, respectively. 
 
The reflectivity statistics over all 929 profiles are 
summarized in Figure 3. The shading ind icates the 
histograms of reflectivities vs. altitude and the solid lines 
represent the average profiles to be compared to the 
averaged observations given by the dashed line. The main 
observations are that both 16-channel and 8-channel 
retrievals work well and produce almost identical results. In 
the rain layer, average reflectivities agree within 1 dBZ 
(15-20% of rainrate).  
 
Figure 3: Modelled EDOP reflectivity from NAST-M retrievals 
using 16 channels (a), 8 channels (b), 2 channels (c) as well as 
observed reflectivities (d). 
 
Near the freezing level, differences occur for two reasons: 

(1) the observed freezing level height is near 5-5.5 km and the maximum of the bright band is at 4.5 km. The 
retrievals show a little more intense peak and a higher frequency of occurrence as well as a freezing level at 
6.5 km.  
 
This difference in altitude is explained by a temperature bias that was identified comparing (1) the 
temperature profiles from the database with those from the ECMWF analysis on 26/08/1998 at 12 UTC; (2) 
the clear-sky TB’s between observations and simulations. Even though the biases in TB's may be corrected, 
the database still contains biased temperature profiles. Another observation is that the simulated reflectivities 
above freezing level are consider ably higher (up to 5 dBZ) than the observed ones. This can only be 
explained by rather large differences between simulated and observed snow/graupel contents. In any case, 
the retrieval of rain profiles is not drastically affected by this problem.  
 
Data assimilation of satellite derived rain rates 
 
Rain rate retrievals from the microwave radiometers SSM/I and TMI have been calculated at pixel resolution 
and calibrated with data from the precipitation radar (PR) for TMI and SSM/I (Bauer et al. 2001). Each rain 
rate Ri (actually a rain liquid water content) is provided along with its error estimate. Averaged rain rates 
have been obtained by binning each observation within model grid boxes to avoid a spatial interpolation of 
temperature and humidity profiles at observation locations (Marécal and Mahfouf 2000). The estimation of 
averaged rain rate errors needs depends on their spatial correlation within each model grid box. The standard 
deviation of the mean rain rate is defined by: 
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where C ij is the spatial correlation of errors between two points i and j separated by a distance dij. Therefore, 
before computing rain rate averages and their associated errors, it is first necessary to use a sample of the raw 
satellite retrievals in order to compute Cij.   
 
On a model grid having a resolution of about 120 km, all pairs of rainy points within each model grid box 
where collected together with their associated errors. The use of a coarser grid than the actual model grid 
allows the computation of correlations over distances up to 120 km. The resolution of the TMI product is 
about 15 km with a sampling at ~10 km. Distances have been binned into 5 km intervals for TMI to compute 
spatial correlations. For SSM/I this distance is reduced to 25 km because this satellite has a coarser sampling. 
The polynomial fit used in Bauer et al. (2002) has been kept (with different coeff icients): 
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The curves C (r) are plotted in Figure 4 for TMI and SSM/I. The spatial correlations are very consistent 

between the two retrievals, since both TMI and 
SSM/I retrievals were calibrated with PR data. For 
a given 6-hour period (26 May 2002: 0300-0900 
UTC) the TMI and SSM/I rain rates are plotted 
with their associated errors both at the pixel 
resolution (15 km for TMI and 25 km for SSM/I) 
and averaged to the model resolution (Figure 5).  
 
Figure 4: Spatial correlation of TMI (solid line) and 
SSM/I (dashed line) rainfall rate retrieval errors. 
 
At pixel resolution, important differences are 
noticed between the products. First, the lack of the 
10 GHz channel and also the larger pixels reduce 
the SSM/I rain rate intensities to maximum values 

around 15 mm/h. On the contrary, the TMI product shows significant amounts of rain rates above 10 mm/h. 
The averaging procedure reduces error by 20-50%.  
 
Ambiguities in the retrieval database are illustrated by the fact that some rain rate values can be retrieved 
with a wide range of different accuracies. For SSM/I rain rates, the larger footprint reduces the differences 
between the scatter plots at pixel and model resolution. Rain rate errors are usually larger than with TMI and 
there is a non-negligible amount of very low rain rates (<0.01 mm/h) that may come from the different 
rejection criteria between the two products. However, it is unlikely that such small amounts could have a 
significant impact when assim ilated due to the very large corresponding errors at model scale (>1000%). It is 
interesting to note that in the range 0.1 to 5 mm/h (peak of the model pdf) the errors between the two 
products are quite sim ilar. 
 
A series of three 4D-Var assimilation experiments starting on the 01 May 2001 over one month where 
performed using the ECMWF forecasting system. An ensemble of 10-day forecasts was also run from the 
1200 UTC analyses. The assimilation system is an incremental 4D-Var where the minimisation in performed 
at a lower model resolution (horizontal grid about 120 km) and the assimilation window is 12 hours.  
 
First, simplified 1D-Var assimilations of rain rates are performed every 6 hours using observ ations 3 hours 
before and after the analysis time to produce total column water vapour (TCWV) retrievals. Then these two 
batches of TCWV retrievals in rainy areas are introduced in 4D-Var as new observatio ns.  The first 
assimilation is a 'control' using the operational configuration of the for ecasting system at the time, the second 
assimilation includes TMI PATER rain rates on top of all data from the control, while the third experiment is 
similar to TMI PATER but assimilates rain rates from SSM/I instead (two sate llites are used: DMSP F -13 
and F-14). 
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Figure 5: Errors as a function of rain rate at pixel resolution and model resolution (~40 km) for SSM/I products 
(left panel) and TMI products (right panel). 
 
 
Time series of day-3 and day-5 forecasts for a 3-week period over the Northern Amer ican continent were 
examined for the geopotential at 500 hpa. For three forecasts starting on the 17, 18 and 19 May the root 
mean square errors (rmse) at day-5 are larger than 100m. The impact of TMI data is to improve significantly 
the forecast starting on 2002/05/18 (rmse around 60m) and also to have a positive (but weaker) impact on the 
two other poor forecasts. The impact in the medium range is also present at shorter ranges (over this period 
there is an almost systematic improvement at 72 h). The impact of SSM/I data is even more spectacular since 
the three poor forecasts are all improved with rmse’s reduced by more than a factor of two.  
 
To the question: Is it better to have a small number of accurate rain rate observations (i.e. from TMI) than to 
have more observations but with a reduced accuracy (i.e. from SSM/I)? The answer from the above example 
is that it seems more beneficial to increase the number of observations because: (1) The accuracy of SSM/I 
and TMI are similar in the range of 0.1 mm/h to 5 mm/h corresponding to the maximum of the rainfall 
distribution. (2) Rather accurate TMI high intensity rain rates (by using the 10 GHz channel) are probably 
not assimilated efficiently because the model physics at 40 km resolution can hardly produce instantaneous 
rain rates above 10 mm/h (therefore quality control will tend to reject such observations).   
 
Conclusions  
 
From the experience of ~20 years of rainfall retrieval algorithm development, the ’physical’ approach that is 
the Bayesian retrieval methodology applied to pre-defined databases from combined cloud-radiative transfer 
modelling emerged as the most versatile technique. This is because it provides the largest detail on the 
microphysical precipitation structure and because it allows the calculation of theoretical retrieval errors. 
Comparing the errors obtained from different algorithms very similar features can be observed; however, 
there may be large differences comparing retrievals from spaceborne and airborne data due to beam-filling 
issues. In any case, systematic errors seem to be comparably small compared to random errors - this is a 
conclusion from the analysis of both airborne and spaceborne data. 
 
Once rainfall observations are assimilated, the spatial error correlation has to be taken into account because 
the observations must be averaged to represent the spatial model resolution. Rainfall rate assimilation 
experiments with the ECMWF mode lling system have shown that apart from the positive impact of the data 
on analyses and forecasts, the accuracy of the observations has to be traded off against the data coverage. 
Depending on the case, better coverage may compensate reduced accuracy. This will be an important 
research issue for future assimilation studies as well as algorithm design.  
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PRECIPITATION ASSIMILATION TO JMA MESOSCALE MODEL 

USING A FOUR-DIMENSIONAL VARIATIONAL METHOD 

 

Ko KOIZUMI (JMA/NPD), Yoshihiro ISHIKAWA (NSSL),  

Tadashi TSUYUKI, Shigenori MURAKAMI (JMA/MRI), Yoshiaki SATO(JMA/MSC) 

 

1. INTRODUCTION 
 

In March 2001 the Japan Meteorological Agency (JMA) started the operation of the mesoscale model (MSM) to 
produce 18 hour forecasts four times a day (00, 06, 12 and 18 UTC initial) to assist forecasters in issuing warnings 
(JMA, 2002). MSM is a hydrostatic spectral model with a horizontal resolution of 10 km and 40 vertical levels up to 
10 hPa. 

  
The initial condition of MSM was at first prepared by a 1-hour cycle analysis system with optimum interpolation and 

physical initialization to assimilate 1-hour accumulated precipitation data. This analysis system was executed for the 
3-hour period just before the initial time with the first guess at the beginning of the period taken from the latest forecast 
of RSM. This analysis system is hereafter referred to as the pre-run system.  The pre -run system was successfully 
replaced in March 2002 by a full forecast-analysis cycle with a 4-dimentional variatio nal (4D-Var) method with 3-hour 
assimilation windows. 

 
This paper describes the precipitation data assimilation to MSM by the mesoscale 4D-Var system and reports on the 

impacts of precipitation assimilation on the MSM precipitation forecasts. 
 
2. PRECIPITATION NOWCASTING IN JMA 

 
JMA has 20 operational C-band radars and about 1,300 automatic surface weather stations called AMeDAS. Using 

those observations, a precipitation nowcasting product is made as follows. 
 
First, radar echo intensity is converted to precipitation rate using the relationship 6.1200 RZ = . Then, the estimated 

precipitation rate is averaged over eight observations during one hour to produce an estimate of one-hour precipitation 
amount. Finally, the estimated  amounts are calibrated using rain gauges to provide one-hour precipitation amount 
distribution all over Japan and surrounding are with 2.5 km resolution (cf. Makihara, 2000).  

 
This nowcasting product is called “radar-AMeDAS precipitation analysis ” which is up-scaled to model grids and 

assimilated to MSM. 
 
3. MESOSCALE 4D-VAR S YSTEM 

 
The cost function of mesoscale 4D-Var system consists of a background term, observation terms, and a penalty term 

for reducing gravity wave noise. The control variables are the initial and boundary conditions of unbalanced wind, 
temperature, surface pressure, and specific humidity. The background error statistics are obtained by using the NMC 
method. The horizontal background error correlations are assumed to be homogeneous and Gaussian type to 
significantly reduce memory requirement.  

 
An incremental method is taken for reducing computational time. The forward model in this system has the same 

architecture as the forecast model (viz. MSM) except that its horizontal resolution is reduced to 20km. The adjoint  
model has the same dynamical process as the forward model while its physical processes include moist processes, 
boundary layer processes, long-wave radiation and horizontal diffusion only. 

 
Assimilated data are radiosonde, synop, ship, buoy, aircraft, wind-profiler and radar-AMeDAS precipitation data. 
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It is to be noted that most of precipitation in MSM comes from the grid-scale condensation although MSM contains a 
prognostic Arakawa -Schubert scheme to parameterize deep cumulus convection. Therefore, the absence of deep 
cumulus convection in the adjoint model may not cause a serious problem in the 4D -Var system. 

 
4. OBSERVATIONAL COST FOR PRECIPITATION 

 
Since the precipitation amount has quite different error probability distribution from other elements such as 

temperature or wind speed, the Gaussian type cost-function is not appropriate for precipitation. Fig.1(b)  shows scatter 
diagram of first-guess values of precipitation and departures of observation from first-guess. It is not symmetrically 
distributed around zero departure as in the case of temperature at 500hPa (Fig.1 (a)). 

 
Then we assume probability density distribution of precipitation as the exponential distribution which is suggested 

from Fig. 1(b). 
 
According to the maximum likelihood method the cost function of precipitation becomes  

x
y

xxypJ rain +=−= )log())|(log(               (2) 

However, this formulation is not appropriate to be used in minimization algorithms as it becomes singular around x=0. 
Moreover, it is more preferable that the cost function has  a quadratic form for the stability of optimizing process. 
Therefore, the above function is expanded around its minimum point (x=y)  
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If truncated at the second order of (x-y), the function becomes Gaussian type with the observation error equal to y.  
   
On the other hand, the function (2) is not symmetric around its minimum point (fig. 2) which means that the observation 
error is assumed smaller in the case of x<y than in the case of x>y. This asymmetricity is seen from Fig. 1(b). 

 

 

Fig. 1 scatter diagram of first-guess value and departure of observation from first-guess. (a) temperature at 
500hPa, (b) one-hour precipitation amount. 

 
Fig. 2 Function (2) around its minimum point in the case of y=1 
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Considering these properties, we practically define the cost function as follows: 

,)(
2
1

)( 2
2

yx
r

xJ rain −=                        (4) 

 where 

 .
)(3
)(

12

1








>=
≤

=
yxrr
yxr

r  

When y<1mm/h, r1 has a constant value which is the forecast error of precipitation for observed precipitation less than 
1mm/h. Otherwise r1 is proportional to observed precipitation amount. 
 
5. ASSIMILATION TEST 

 
Figure 3 shows an example of precipitation assimilation. By assimilating one hour precipitation amounts during three 

hour assimilation window, precipitation distribution is well reproduced. The forecast starting from the initial condition 
to which precipitation data were assimilated also shows good agreement with observation (fig. 4).  
 
6. IMPACTS ON FORECASTS 

 
In order to evaluate the performance of 4D-Var and the impact of precipitation assimilation, several analysis -forecast 

cycle experiments were performed. 
 
First, two sets of one-month experiments during June and September 2001 were made to compare the 4D -Var and 

pre-run systems. The result shows that the precipitation forecasts starting from 4D-Var are much better than those from 
the pre-run (figures not shown).  

 
Second, an observation system experiment (OSE) for precipitation data was performed for June 2001 using the 

4D-Var system. Threat scores (fig.5 left) show that the precipitation forecasts were improved by assimilating 
precipitation data especially for first few hours and bias scores (fig. 5 right) show that the spin-up problem of MSM is 
alleviated by precipitation assimilation. 

 
However, the 4D-Var system sometimes failed to assimilate the precipitation data when the first guess was in a dry 

condition in spite of the fact that the full-physics nonlinear model is used as the inner-loop forward model. This is an 
inherent problem with 4D -Var assimilation of precipitation data using model physics that contain “on-off” switches. 
That problem may be ameliorated by assimilating moisture data.  

 
Then the third experiment is an OSE for TMI (TRMM Microwave Imager) precipitable water data and combined use 

of TMI-PW and precipitable water data from ground-based GPS observation. 
 
Figure 6 shows an example of first three hour forecasts. A spurious heavy rain area (“A” in fig. 6) produced by 

precipitation assimilation was reduced by using TMI-PW data though it was a little bit too much suppressed (“B”). 
Complemental use of TMI-PW (moisture information over sea) and GPS-PW (moisture information over land) gave the 
best result among them. Threat scores of 1mm per 3 hour precipitation (fig. 7) show that the combined use of TMI and 
GPS improves the precipitation forecasts all through the 18-hour forecast time. 
 
7. CONCLUDING REMARKS  

 
Precipitation forecasts of JMA mesoscale model are improved by assimilating precipitation data especially for first 

few hours of forecast time, that means that the NWP precipitation of first few hours may become more reliable by 
assimilating precipitation data. However, the 4D-Var is not always successful in assimilating precipitation as stated in 
the previous section, hence the assimilation of moisture data from GPS, satellite microwave observation and others is 
indispensable. 
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A negative aspect of the NWP precipitation is that it has considerable errors even for short forecast time and its 
probability density distribution is sometimes different from the nature (see fig. 1). Whether spatial or temporal 
averaging can alleviate the problem requires further investigation. 
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(a) OBSERVATION 3HOUR 

PRECIPITATION 
(a) OBSERVATION 3HOUR 

PRECIPITATION 

(b) ANALYSIS 

 

(b) FORECAST 

Fig.3 The 3-h precipitation accumulated over 
the assimilation window for (a)observation 
and (d)4D-Var analysis. The target analysis 
time is 00UTC 16 March 2000. The operational 
forecast with JMA regional spectral model 
from initial condition of 12UTC 15 March 2000 
is used as the first guess. 

[mm] [mm] 

Fig.4 The 3-hour precipitation accumulated 
over 0-3hours for (a)observation and (d) 
forecast starting from the initial condition 
produced by precipitation assimilating 
4D-Var. 
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Fig.6 Three hour precipitation amount during 12 – 15 UTC 19th June 2001 of control run, TMI run, TMI+GPS 

run and observation from left to right respectively. Initial time of forecasts is 12 UTC 19th June 2001. 
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Fig. 7 Threat scores of forecast precipitation over 1 mm/ 
3 hour. Forecast time is –3-0 (within assimilation 
window), 0-3, 3-6, 6-9, 9-12, 12-15 and 15-18 hour 
from left to right respectively. Solid bold line shows 
those of TMI+GPS run, solid thin line TMI run and  
dashed line control run. Scores are calculated for 15 
cases during 18 UTC 18 th June 2001 to 12 UTC 21st

June 2001 against radar - AMeDAS precipitation 
analysis data which are interpolated to model grid. 
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Fig. 5 Threat score (left) and bias score (right) of 3-hour accumulated precipitation 
over Japan plotted against forecast time for one month period of June 2001. 
Threshold value is 10 mm with a horizontal resolution of 10 km. Solid and 
dashed lines are with and without assimilating the precipitation data, 
respectively. 
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The precipitation in ERA-40 
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6 The ECMWF ERA-40 data assimilation system 
 
 The production phase of the second ECMWF reanalysis project, ERA-40, is just about to be finalized. ERA-40 is a 
project under the European Union Framework 5 programme, with further support from WCRP, Fujitsu Ltd. and 
ECMWF Member States, and it covers the period from August 1957 to March 2002. The basic idea of a reanalysis is to 
produce a consistent set of multi-annual global analyses with a frozen data-assimilation system as  suggested by e.g. 
Bengtsson & Shukla in 1988. However, during the 45 ERA -40 years there have been many major changes in the global 
observing system; old observations may have been lost, there have been (political and budgetary) reductions in the 
amount of conventional observations (‘weather ships’), new technologies have improved the accuracy of measurements, 
and above all, there are many new space-based observing systems. It is therefore unavoidable that there will still be 
interannual variations in the reanalyses from other reasons than real changes in the atmosphere’s circulation. 
  
 The data assimilation system for ERA-40 is essentially the same as that used for operational forecasting at ECMWF 
in recent years, although with a lower horizontal resolution and a 3-dimensional (rather than the operational 
4-dimensional) variational analysis. Ground- and air-based observations for the project were assembled from many 
sources, primarily NCAR/NCEP, COADS, US -Navy, JMA and the GTS. Space-based observations were also 
assembled from many sources, NASA, NOAA/NESDIS, Eumetsat, Wentz, ESA, LMD and the GTS. 
  
 The main characteristics of the ERA -40 data assimilation system are: 
 
The ECMWF IFS (Integrated Forecasting System version Cy23r4) has a spectral resolution of TL159 - and a 
corresponding ‘reduced’ Gaussian grid of ~125*125km. There are 60 vertical hybrid levels with the top level at 0.1hPa 
(~64km) and with a high vertical resolution in the boundary layer. The 3-dimensional variational analysis is made 
intermittently every 6 th hour, with the observations used at their appropriate time (within the hour). Satellite radiances - 
from the HIRS, MSU, SSU, SSM/I and VTPR  instruments on the NOAA and DMSP spacecraft - are assimilated 
directly using a radiative transfer model (RTTOV). There is also an analysis of ozone from the satellite TOMS and 
SBUV data, and a wave height analysis based on altimeter data from ERS-1 & 2. Sea surface temperatures and sea ice 
limits come from the UKMO Hadley Centre monthly HadISST1 1957-1981 and from the NCEP weekly 2-D variational 
analyses 1982-2001. These, together with the IPCC trends for CO2, are the external forcings of the reanalyses. 
  
 There is no analysis of precipitation in ERA -40. The model’s diagnostic precipitation is produced and released by 
parameterized microphysical processes in clouds. Clouds are formed at supersaturation by two processes, convective 
and ‘large-scale’. 
  
 In addition to the 6-hourly forecasts used for the data assimilation, 36-hour forecasts were run twice daily, from 
00UTC and 12UTC. Accumulated precipitation is extracted from these short-range forecasts and averaged into 
monthly/daily means, at +6 hours and from the +12h to +24h accumulation. 
  
 The ERA -40 data assimilation system is described in the web documents for ERA -40 
(http://www.ecmwf.int/research/era/DA-system/index.html) 

7 Comparison with GPCP 

 
 Version 2 of the Global Precipitation Climatology Project monthly mean precipitation 
(http://precip.gsfc.nasa.gov/gpcp_v2_comb.html) estimates were downloaded and compared with ERA -40 for the 
23-year period 1979 -2001. The original ERA -40 Gaussian grid forecasts were interpolated (bi-linearly) to the 2.5 °* 2.5°  
grid used for GPCP. Zonal means, separately for land and ocean areas, averaged over 23 years are seen in figure 1.  The 
ERA-40 monthly mean precipitation is summed from the twice daily +12h to +24h forecasts ( full red) in order to avoid 
the spin-down/spin-up in the 6-hour forecasts (dotted blue). At middle and high latitudes ERA-40 generally agrees very 
well with GPCP (black). The large differences at high southern latitude land areas are explained by the limitations of 
GPCP in steep orography (the Andes). 
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 In the tropics, on the other hand, the ERA -40 precipitation is very large, peaking at 9.5 mm/day in the oceanic ITCZ 
compared with 6 mm/day in GPCP.  That the reanalysis precipitation is ‘excessive’ is seen in the global hydrological 
balance, P-E (precipitation minus evaporation) extracted from the 24h forecasts. In the latter years, 1989-2001, when 
there was a dense coverage of humidity observations in the tropics, it rains more than it evaporates also over the sea.  
This is obviously unrealistic. In the early years when humidity observations in the tropics were very sparse or absent, P-
E is in excellent balance. 
 

Table 1: Global hydrological balance 
(Precipitation - Evaporation in mm/day) 
in the +12h to +24h forecast range. 
13 year averages from pre-satellite and 
satellite years. 
 
 
 
 
 
 

 
 
 
Figure 1. Zonally averaged monthly mean precipitation, averaged from January 1979 to December 2001, separately for 
ocean (below) and land (above) areas. The full red line is the ERA-40 +12h to +24h accumulation, the dotted blue line 
the 00h to +06h accumulations and the black is GPCP. 
 
 
 
 
 
 
 

 
 
 
 
 
 Month-by-month comparisons between ERA-40 and GPCP can be displayed as scatterograms.  In the Asian 
monsoon land regions for instance, (not shown here), ERA-40 does indeed rain more than the GPCP estimate, but there 
is a quite high correlation (0.97) between them, indicating that the reanalysis describes the monsoon variability 
qualitatively well, if not quantitatively (the bias is +0.66mm/day). At higher latitude land areas in regions well covered 
by gauges, the agreement between the reanalysis and GPCP is quite good, e.g. over North America or the British Isles 
(figure 2). 

 +12h -> +24h  1958-1970 1989-2001 
Land +0.72 +0.86 

Ocean -0.25 +0.31 

Globe +0.03 +0.47 
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Figure 2. Scatterogram of 23 years of monthly mean precipitation estimates in land points 
in northern America (above) and the British Isles (below) 

 
 There have been several attempts to explain the unrealistically large precipitation in the tropics, particularly over the 
oceans. Among them volcanic aerosols ('Pinatubo' in 1991), ENSOs, biases in the SSMI data, uncertainties with bias 
corrections for the TOVS radiances (IR or :-wave) or even aliasing in the geographical distribution of used radiances. 
None of these have been found to be the root cause  
 
 Very recent developments at ECMWF are however now providing a plausible explanation (H∧lm, pers. comm.). 
The control variable for humidity in the variational analysis is the specific humidity, q. With the assumption of 
Gaussian background error covariances, observations of high specific humidity near saturation can generate widespread 
saturation, leaving it for the forecast model to take care of the adjustment in the ensuing 6-hour forecast.  
 
 This suggestion is strongly supported by figure 3, which shows the spinup/spindown of the two precipitation 
components, convective and stratiform over the oceans. The global convective precipitation spins down from 
1.77 mm/day during the initial +6h forecasts to 1.68 mm/day in the 12h to 24h interval. The spindown in the convection 
happens almost entirely in the ITCZ. Spindown of the tropical ocean convection has also been noted in the operational 
4D-Var analyses. The stratiform precipitation on the other hand increases during the first day, globally from 
1.78 mm/day to 2.01 mm/day, both in the ITCZ and in the mid latitudes.  It can furthermore be noted by comparing 
with figure 1 that the convective spindown  and the stratiform spinup in the tropics compensate each other almost 
perfectly. 
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Figure 3. Spinup/spindown of the two precipitation components, convective (above) and stratiform (below). 23 years of 
monthly means 1979 to 2001 over the oceans. 
 

8 Conclusions 

The second ECMWF reanalysis is now finalized. Comparisons of the model diagnosed precipitation in ERA -40 with 
GPCP show good or excellent agreement with GPCP in mid - and high latitudes over the years 1979 to 2001. In the 
tropics on the other hand the ERA-40 system overestimates the precipitation, particularly in the oceanic ITCZ. 
 
The explanation for the overestimate is believed to be a fundamental feature of the variational data assimilation 
assumptions, in that specific humidity is used as the control variable. With the Gaussian background error covariance 
model employed, there will be a bias towards saturation in the humidity increments. This ‘extra water is only removed 
by convective scheme in the subsequent forecast steps. Release of ‘extra’ latent heat by the convection is enhancing the 
intensity of the ITCZ circulation, and leads to an increase in the tropical stratiform precipitation.  In short, the 
combination of high density of (tropical) humidity observations from SSMI and TOVS and the choice of control 
variable and error covariance assumptions for humidity lead to an overestimation of tropical precipitation in ERA-40. 
However, since the ‘extra’ water is added in areas already close to saturation and with large specific humidities, it is 
likely that the reanalysis synoptics is structurally close to reality also here, albeit a bit too intense.  We believe the ERA-
40 analyses will be very useful also for studies of the tropical circulation (MJO, westerly bursts ...).  
 
In the pre-satellite years 1958-1970 when there were very few upper air observations of humidity in the tropics, the 
hydrological cycle is in very good balance (Table 1).  
 Finally, there is also a noticeable spinup in midlatitude stratiform precipitation, and this is in both the satellite and the 
pre-satellite years. A likely cause here is the intermittent nature of the 3D-Var data assimilation. Developing baroclinic 
disturbances in the forecasts are damped at each analysis time by the vertically oriented analysis increments from the 
analysis.  This deficiency can only be addressed with flow dependent model error covariances, as in the 4D-Var 
analysis method used operationally at ECMWF. 
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1. Introduction 
 
Precipitation is observed from space through active and passive microwave techniques. Available from several orbiting 
platforms, those observations provide continuous global coverage. However, the information content of satellite observations, 
on which precipitation analysis rests, is limited by the sampling in sp ace and time. 
 
Satellites observe the global precipitation field asynoptically: Different sites are observed at different times. Observations are 
continuous along a satellite's track, but discrete between successive orbits. These features limit the space-time resolution of 
satellite data. For an individual platform, asynoptic sampling resolves about half a dozen zonal wavenumbers and frequencies 
less than 1 cpd.  The precipitation field, on the other hand, involves variance on much shorter scales.  
 
Variance at short space and time scales is undersampled in satellite data, lying beyond the Nyquist limits of asynoptic 
sampling.  Such variance aliases behavior at longer scales which would otherwise be correctly represented in asynoptic data. 
This limitation complicates the gridding of data into synoptic maps of the instantaneous precipitation field. Through the 
diurnal cycle, undersampled variance also aliases the time-mean precipitation field.  
 
2. Information Content of Asynoptic Data 
 
Figure 1 
 
Rooted in sampling considerations, these errors involve behavior that is misrepresented in asynoptic data. Figure 1 illustrates 
the sampling along an individual latitude circle from a single platform with about 14 orbits/day. Plotted is the sampling with a 
Narrow Field of View (NFOV), characteristic of an active instrument like the TRMM radar (solid/open circles).  Analogous 
sampling applies to a Wide Field of View (WFOV), characteristic of a scanning radiometer (shaded). Although capturing 
instantaneous structure within 25° of longitude, the WFOV likewise leaves most of the precipitation field at that time 
unobserved. 
 
For the NFOV, 28 longitudes are observed during one day: 14 from each side of the orbit.  Were those longitudes observed 
simultaneously, this sampling would resolve 14 zonal wavenumbers. On the next day, 28 different longitudes are sampled. 
They are nested nonuniformly within the original 14 longitudes. Collected with those of the first day, they imply the 
resolution of 28 zonal wavenumbers. After several days, this nested sampling accumulates, yielding a dense mesh of 
longitudes that, although nonuniform, implies very fine spatial resolution.  
 
The consideration which preventts this benefit is transience.  The precipitation field evolves on time scales much shorter than 
the time for the globe to be covered.   Hence, while precipitation is being observed at one site, it is changing at another.  
 
When observations on the latitude circle are represented in extended longitude and time (Fig. 2), the {non-uniform} character 
of asynoptic sampling disappears. Observations from the NFOV then form a uniform grid along two ``asynoptic 
coordinates":} s and r (Salby, 1982):  Each is a mixture of space and time.  Much the same picture holds for the WFOV 
(shaded). Despite high spatial resolution within the instantaneous field of view, the WFOV likewise leaves large gaps in space 
and time between successive orbits.  Small-scale structure within the instantaneous WFOV is incoherent between adjacent 
orbits (e.g., Lait and Stanford, 1988).  Consequently, it does not lend itself to interpolation into a continuous description of the 
global precipitation field. 
 
Figure 2:  
 
Figure 3:  
 
Figure 4: 
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The uniform sampling along asynoptic coordinates establishes the resolution in space and time.  It, in turn, defines the 
information content of satellite data. Illustrated in Fig. 3 in terms of zonal wavenumber and frequency, the information 
content corresponds to a rectangle oriented along two ``asynoptic wavenumbers": k s and kr.  Analogous to their counterparts 
in phhysical space, ks and kr are mixtures of synoptic wavenumber and frequency.  The boundaries of this rectangle represent 
the Nyquist limits of asynoptic sampling. Resolved are about 7 zonal wavenumbers and frequencies out to about 1 cpd (0.5 
cpd if asymmetry inherent to asynoptic sampling is not accounted for; Salby, 1989). The information content is comparable to 
that of synoptic sampling, with 14 longitudes observed simultaneously twice per day.  
 
Variance outside this rectangle is undersampled.  In the asynoptic data, it is {indistinguishable} from variance inside the 
rectangle.  An example is illustrated by the two solid circles in Fig. 3:  They describe a high -wavenumber stationary 
component and a low-wavenumber transient component. In a continuous representation along the asynoptic coordinate s 
(equivalent to time in a reference frame moving with the satellite), those components are mutually distinct (Fig. 4). In the 
discrete asynoptic data, however, the two components are identical.  
 
Variance outside the Nyquist limits is undersampled.  It is therefore misrepresented in the asynoptic data as variance inside 
the Nyquist limits. Undersampled variance folds back onto behavior at longer (resolvable) scales, which would otherwise be 
correctly represented. 
 
These sampling considerations are violated by two important classes of variability: (1) Broad-band variance is widely 
distributed over wavenumber and frequency, spilling beyond the Nyquist limits of asynoptic sampling. (2) Diurnal variations 
involve harmonics of a day, which lie at and beyond the Nyquist limits.  Those harmonics alias zero frequency, introducing a 
bias into the time-mean distribution.  These classes of variability challenge the information content of asynoptic dat a. They 
also represent the two major elements of the precipitation field. 
 
3. High-Resolution Description of Convection  
 
Figure 5: 
  
The impact of undersampled variance has been studied in high-resolution Global Cloud Imagery (GCI), which has been 
constructed from 6 satellites simultaneously monitoring the earth (Salby et al., 1991). Illustrated in Fig. 5, each image 
represents a nearly instantaneous  snapshot of the global convective pattern.  With horizontal resolution of 0.5º and temporal 
resolution of 3 hrs, the GCI resolves the dominant scales of organized convection. 
 
Cold cloud fraction ηc provides a proxy for areal-averaged rainfall  (e.g., Richards and Arkin, 1981), serving as a cornerstone 
even in diverse analyses like GPCP that include ground-based measurements (Huffman et al., 1997). Through ηc, the GCI has 
been married with monthly-mean precipitation in GPCP to map the global distribution of rainfall at horizontal resolution of 
2.5° and temporal resolution of 3 hrs.  In the sampling experiments below, we rely on the raw imagery of ηc in the GCI.  
Available at increments of 0.5°  and 3 hrs, it provides short-scale behavior that approaches the granularity of the actual 
precipitation field. The GCI then provides a litmus test of asynoptic sampling. 
 
Figure 6 plots the frequency spectrum of cold cloud, over tropical Africa.  The spectrum at individual sites (dotted) is broad 
band, punctuated by pronounced spikes at harmonics of the diurnal cycle. Those harmonics reflect brief but heavy rainfall at 
preferred local times, which contributes disproportionately to the daily accumulation (Janowiak et al., 1994).  More sobering 
is what happens if cold cloud is averaged spatially over the convective center.  The spectrum (solid) is then dominated by 
diurnal variance. Unlike other fluctuations, the diurnal variation is spatially coherent across the region of convection 
(Bergman, 1996; Bergman and Salby, 1996).  Consequently, it is not removed by spatial averaging. It is, in fact, the large -
scale coherent component that is important for climate studies and for refining models. 
 
4. Aliasing by the Diurnal Cycle  
 
Figure 6:  
  
We turn now to what undersampled variance implies for deriving the time-mean distribution. To cope with diurnal variance, 
satellites are flown in a precessing orbit: Observations on a latitude circle then drift through local time, eventually sampling 
all phases of the diurnal cycle.  However, even this sampling is limited by two practical considerations: (1) The precession 
period is long, typically a month or longer. (2) The diurnal variation is not steady, but random. It varies from one day to the 
next according to the presence of convection. These considerations require a population of observations , several at each local 
time, to composite the mean diurnal variation.  Only in a large enough population is the mean diurnal variation  
truly separated from the time mean. 
 
To evaluate the systematic error from diurnal aliasing, the GCI has been sampled asynoptically from a single platform with 
specified orbital and viewing geometries. The resulting time-mean distribution is then compared against the true time mean in 
the GCI. Figure 7 plots the relative error recovered from a WFOV,  with a precession period of  about a month. After 1 month 
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of averaging, the bias from undersampled diurnal variance exceeds 50° over regions of tropical convection. Even after 
3 months of averaging (not shown), the systematic error still exceeds 30%.  
 
Figure 7:  
 
Figure 8:  
 
Figure 8 plots the same information, but for a NFOV. The systematic error is noticeably greater.  After 1 month of averaging, 
it approaches 80% in regions of tropical convection. Even after 3 months of averaging (not shown), the bias exceeds 40%. 
 
The different systematic errors produced by these viewing geometries follows from how often individual sites are sampled 
(Salby and Callaghan, 199 7). During one month, a 2.5°cell is sampled by the NFOV instrument 50--100 times.  This yields 
only 2--4 observations per hour of local time for each 2.5° cell.  In contrast, the same cell is sampled by the WFOV 
instrument an order of magnitude more frequently.  The larger population better separates the mean diurnal variation from the 
time mean, which then contains a smaller bias.  
 
5. Synoptic Mapping of Large-Scale Structure 
 
We turn next to undersampled small-scale variance and its implications for synop tic maps of global structure.  Constructing 
synoptic maps is more ambitious than the time-mean distribution.  However, two features work in its favor: (1) Small 
undersampled scales are not of primary interest in climate applications. Rather, it is their organization by large scales that is 
most important.  (2) Aliases of those undersampled scales are random.  
 
A technique has been developed to reject undersampled incoherent variance, leaving a more accurate representation of 
large-scale coherent variance (Salby and Sassi, 2001), As before, the GCI is sampled asynoptically from a single orbiting 
platform. Figure 9a plots, from the raw sampled data, the spectrum over asynoptic wavenumber k s. (It is equivalent to the 
spectrum over frequency in a frame moving with the satellite.)  Broadly distributed over wavenumber, the spectrum is 
statistically white. It can be shown that only variance within a neighborhood of integer ks lies within the asynoptic rectangle 
of Fig. 3. Variance removed from integer ks, which dominates the spectrum in Fig. 9a, is then undersampled. Figure 9b plots 
the same information, but after the technique has been applieed to the raw asynoptic data. Variance is now concentrated about 
integer k s. Variability has therefore been discriminated to those space and time scales that are resolved in the asynoptic data. 
 
Figure 9:  
 
This technique has been applied to data sampled asynoptically from the GCI to produce daily synoptic maps over a 1-month 
period. The results are then compared against the true synoptic behavior in the GCI. When synoptic maps are produced from 
the raw asynoptic data, the error at large scales is as great as the large-scale signal present.  However, when the asynoptic data 
are processed via this technique,  
the error variance is reduced to 10% or less. 
  
 
Figure 10:  
  
Figure 11:  
 
Figure 10 illustrates the synoptically-mapped evolution over the equatorial central Pacific. The period shown includes an 
amplification of the Madden-Julian oscillation (MJO), which organizes tropical convection.  In the synoptically -mapped 
evolution (dashed), cold cloud is magnified during the first week, when convection in the MJO crosses the dateline.  Cold 
cloud then decreases sharply, as convection migrates eastward and leaves the region.  The mapped evolution faithfully tracks 
the true large-scale evolution in the GCI (solid). So does the global structure in synoptic maps (ibid.). 
 
6. Representation of Convection in Models  
 
Analyzed precipitation, derived through a model, must contend with the misrepresentation of scales in asynoptic data. 
A precipitation analysis also relies on the model's representation of precipitation. It competes with observed precipitation 
where measurements are available, but serves in place of them where they are not. 
In general, cumulus convection is poorly represented in models, as is its diurnal variation. Although details of its simulation 
vary with model and convective parameterization, certain forms of pathological behavior are common to many GCMs.  
Figure 11 plots, from the BMRC model, the forecast distribution of cloud brightness temperature for the same time as in Fig. 
5. Comparison shows that the model reproduces observed structure remarkably well at middle and high latitudes, where cloud 
is organized by sloping convection. In the tropics, however, where cloud is organized by cumulus convection, the simulation 
is less successful. Not only does the instantaneous structure differ, but so does the evolution.  
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The simulation in the tropics deviates from observed behavior on the time scale of days and, most conspicuously, in relation 
to the diurnal cycle. This form of pathological behavior is not unique to the BMRC model. In fact, it is intrinsic to many 
GCMs, including the COLA model and the NCAR CCM (Ricciardulli and Garcia, 2000).  Figure 12 compares the power 
spectrum of areal-averaged precipitation over the equatorial Pacific (inside the window shown in Figs. 5 and 11) represented 
in the GCI vs that simulated during the same period by the COLA model. The observed behavior (Fig. 12a) involves a red 
spectrum, in which variance is distributed broadly out to 1 cpd.  The diurnal cycle, although present, is comparatively minor 
because the region considered is principally maritime.  In the simulated behavior (Fig. 12b), however, power is sharply 
concentrated at low frequency and at the diurnal cycle. At intermediate scales, where convection is organized through 
interaction with the circulation, power is virtually absent. Analogous behavior is evident in other models (ibid.).  Depending 
on the convective parameterization, the diurnal cycle can be even stronger, dominating the organization of tropical convection. 
 
Figure 12:  
 
7. Implications 
 
Aliasing by undersampled diurnal variance is significant over much of the tropics. This is especially true near land, where 
convection undergoes a pronounced diurnal variation. The time-mean precipitation field can therefore be determined only as 
accurately as can the mean diurnal variation. This systematic error requires data from a single platform to be averaged over 
several months -- even if that platform is in a precessing orbit.  
 
The random component of sampling error can be sharply reduced by rejecting incoherent variance. Large -scale coherent 
structure, describing the organization of precipitation, can then be mapped synoptically on individual days.  This opens the 
door to a wide range of scientific applications, including issues surrounding how precipitation interacts with the general 
circulation. 
 
The foregoing limitations stem from sampling error, which leads to a misrepresentation of scales in asynoptic data. Once the 
precipitation field has been undersampled, aliased behaviorr is difficult to distinguish from behavior that is genuinely present. 
This feature is an important consideration for assimilating satellite measurements into a forecast model. Beyond incorporating 
observed behavior, the model generates precipitation at other locations and times, for which observations are absent. The 
characteristic scales of precipitation are much shorter than space -time gaps in asynoptic data from a single platform. For this 
reason, only the large-scale organization and statistics of observed precipitation can be interpolated reliably into a continuous 
description of the global precipitation field. An accurate analysis of global precipitation will require (1) the input data to be 
properly interpreted and (2) statistical properties and the organization of precipitation in the model, inclusive of the diurnal 
cycle, to faithfully represent counterpart behavior in the atmosphere. 
 
The ultimate solution to these limitations is more frequent sampling in space and time. This feature is provided by multiple 
orbiting platforms. If details of the combined sampling are accounted for, such precipitation measur ements make possible 
accurate monthly -mean structure, as well as synoptic maps with enhanced frequency and horizontal resolution.  
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FIGURE CAPTIONS 
 

 
Figure 1: Asynoptic sampling along a latitude circle from a single orbiting platform with a narrow field of view 
(solid/open circles) and a wide field of view (shading). 
 

 
Figure 2: Sampling along the latitude circle, as function of extended longitude ? and time t. 
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Figure 3: Information Content of asynoptic data from a single platform,as function of zonal wavenumber  kλ and 
frequency kt 
 

 
Figure 4: Behavior along asynoptic coordinate s of a high-wavenumber stationary component and a low-
wavenumber transient component (solid circles in Fig. 3), which form an alias pair.  Values actually sampled by 
satellite indicated in solid circles. 
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Figure 5:  Global Cloud Image (brightness temperature) at 06Z on Nov 17, 1987.  
 

 
Figure 6: Frequency spectrum of cloud over tropical Africa: Ensemble average of spectra at individual 0.5° 
locations (dashed) vs spectrum of areal average (solid). 
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Figure 7: Relative bias from diurnal aliasing after averaging asynoptic observations over 1 month. Derived from a 
precessing orbit with a WFOV (25°ground scan). 
 
 
 

  
Figure 8: As in Fig. 7, but for a NFOV (2.5°ground scan). 
 

 
Figure 9: Power spectrum of cold cloud, as function of asynoptic wavenumber ks, (a) from raw asynoptic data and 
(b) after processing to rejec t incoherent variance. 
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 Figure 10: Large-scale evolution of cold cloud over central 
Pacific  (a) in synoptically-mapped behavior and (b) actually 
present in GCI. 

 

 
Figure 11: As in Fig. 5, but simulated in a 2-day forecast by the BMRC model. 
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Figure 12: Power spectra of areal-averaged precipitation over equatorial Pacific, indicated in Fig. 5, 
(a) represented in the GCI and (b) simulated by the COLA model. 
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ABSTRACT 
 
Despite advancements from recent passive microwave-based meteorological satellite missions, the identification and 
quantification of precipitation on short time scales (e.g, 3-6 hours) from satellites remains an elusive quantity.  Yet the 
needs for a timely precipitation analysis continue to grow, in numerical weather prediction, hydrological, aerosol and 
land surface models, all of which are funda mental to day-to-day military operational support.  Additionally, very few 
raingauge networks operate with the necessary spatial density and time resolution required for validation of a short-time 
scale, satellite-based precipitation analysis.  Observationally, the main issue remains the lack of adequate time sampling 
throughout the day; new sensors such as the Advanced Microwave Scanning Radiometer (AMSR) on EOS-Aqua, the 
Advanced Microwave Sounding Unit (AMSU-B) on the NOAA satellites, and the Tropical Ra infall Measuring Mission 
(TRMM) have narrowed this gap.  However, at short time scales other issues arise, relating to inter-sensor bias, cloud 
geometry (each satellite views from a different perspective), all of which combine to place a fundamental limit on how 
accurately a short-term-average precipitation estimate can be retrieved. 
 
Recent investigations have emphasized other means to blend additional datasets, such as operational rapid-update 
geostationary-based thermal infrared (IR) data, with the various passive microwave (PMW) instruments based on low 
Earth-orbiting (LEO) satellites.  Since these data in fact represent the diurnal variation of clouds and can often lead to 
erroneous assignment of precipitation to cold non-precipitating clouds or miss significant rain from warm-cloud top 
situations, the blended scheme tries to use the IR data to guide the PMW data during the revisit time (in-between 
successive overpasses).  Recent validation efforts using densely spaced raingauges with a 1-minute update cycle has 
shown that while this type of technique produces generally unbiased estimates on daily/1-degree time and space scales, 
it tends to underestimate at shorter time scales and with an associated increase in RMS error.  This presentation will 
show some  current uses and underlying limitations of these blended datasets, and highlight other ongoing efforts to 
improve the quantification and error characteristics of short-time scale satellite-derived precipitation. 
 
1.  INTRODUCTION 
 
The past two decades have witnessed the rapid evolution of the low Earth-orbiting (LEO) passive microwave (PMW) 
imaging sensor from a research setting into routine operational settings.  The conically-scanning, sun-synchronous 
orbiting Special Sensor Microwave Imager (SSMI) imagers onboard the Defense Meteorological Satellite Program 
(DMSP) satellites launched between 1987 and 1999 were joined by the joint United States/Japan Tropical Rainfall 
Measuring Mission (TRMM) Microwave Imager (TMI) in 1997, and the Advanced Microwave Scanning Radiometer 
(AMSR-E) aboard the Earth Observing System (EOS) Aqua in 2002.  The Advanced Microwave Sounding Unit-B 
(AMSU-B), an across-track scanning humidity sounder onboard the National Oceanic and Atmospheric Administration 
(NOAA) operational LEO satellites, has an operational rainfall product which is distributed by the National 
Environmental Satellite Data Information Service (NESDIS) Microwave Surface and Precipitation Products System 
(MSPPS) (Weng et.al, 2002).  A variety of conditions make short-time scale satellite-derived precipitation problematic 
to validate.  The changing time and three-dimensional spatial scales of global precipitation processes, the intermittent 
and unequally spaced satellite revisit, the instantaneous nature of a moving-platform satellite observation, the 
characteristics of the validation system, among others, each effect must considered in order to properly derive and 
interpret validation statistics.  To attempt to validate a satellite-based precipitation analysis at a daily or sub-daily time 
scale and a sub-degree spatial scale requires a validation system with a dense, homogeneous spatial coverage and a time 
sampling rate fast enough (and extended over a long enough period of time) to coordinate meaningful comparisons with 
the instantaneous nature of moving-platform satellite-based observations, and some means to supplement (or account 
for) the intermittent LEO overpass schedule.  Overall, when all of the above-mentioned operational LEO satellite 
platforms are taken into account (three DMSP, one TMI, and three NOAA as of early 2003), orbit calculations show 
that the resultant worst-case revisit still hovers near six hours in the tropical latitudes. 
 
With the fundamental intermittent nature of PMW observations, the idea of capitalizing on the frequent, routinely 
scheduled infrared (IR) observations available from geostationary operational meteorological satellite platforms has 
received increasing attention in recent years (Adler et.al, 1993; Vicente, 1994; Levizzani et.al, 1996; Kidd et.al, 1998; 
Miller et.al, 2000; Todd et.al, 2001; Morales and Anagnostou, 2002; Dietrich et.al, 2001; Grecu et.al, 2000; Ba et. al, 
2001; Grose et. al, 2002; Kuligowski, 2002).  This article focuses specifically upon validation and performance of a  
particular blended-satellite technique at various small spatial and short time scale combinations, using raingauge data 
the densely spaced, 1-minute reporting Korean Meteorological Administration (KMA) Automated Weather Station 
(AWS).   Some underlying limitations of the expected performance of this and other types of sub-daily blended satellite 
techniques are discussed. 
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Figure 1. Left side: (top) Percentage of 2-degree boxes covered with time/space coincident IR-PMW observations over the Earth from 60S -60N 
latitude, as a function of the look -back time, and the number and type of Low Earth Orbiting (LEO) satellite sensors used.  (middle) Average number 
coincident observations in each 2-degree box.  (bottom ) Average age in hours of the coincident observations in each 2-degree box.  The maximum 
allowed time and space offsets between the LEO-based microwave sensor pixel and the geostationary IR pxel are 5 minutes and 10 km, respectively.  
Right side:  Same as left side panels, but for a maximum allowed time offset of 15 minutes.  Figure 2. Maps of the monthly mean rainrate over the 
South Korean peninsula for June, July and August 2000. 
 
 
2. BLENDED TECHNIQUE DESCRIPTION 
 
The blended technique developed at NRL is based upon the underlying collection of time and space -intersecting pixels 
from all operational geostationary orbiting IR imagers and LEO PWM imagers. In order to blend the disjoint LEO 
PMW and geostationary IR measurements in an automated and adaptive manner, the blended technique starts by 
subdividing the Earth into a 2-degree/pixel grid (60 lines by 180 samples) with a finer, 0.25-degree/pixel grid (480 lines 
x 1440 samples) nested inside it (the reason for these values are discussed below) between 60N and 60S.  As new PMW 
datasets arrive, the PMW-derived rainrate pixels are paired with their time and space-coincident geostationary 11-um IR 
brightness temperature (TB) data, using a 15-minute maximum allowed time offset (denoted by ?t) between the pixel 
observation times and a 10-km maximum allowed spatial offset (denoted by ?d) as depicted in Figure 1.  
 
Prior to this, the geostationary data are averaged to the approximate resolution of the PMW rainfall datasets (30-km for 
SSMI, 10-km for TMI, and between 15-50 km for AMSU-B depending upon scan position), and parallax-induced 
geolocation displacements are accounted for using the procedure of Vicente et. al. (2002).  Each collocated data 
increments histograms of the IR TB and the PMW rain rate in the nearest 2o box, as well as the eight surrounding boxes 
(this overlap assures a fairly smooth transition in the histogram slopes between neighboring boxes).  As soon as a 2o box 
is refreshed with new LEO data, a probabilistic histogram matching relationship (Calheiros and Zawadski, 1987) is 
updated using the PMW rainrate and IR TB histograms, and a T B-R lookup table is created.  To assure that the most 
timely rain history is maintained, the histograms of these coincident data are accumulated backwards from the current 
clock time (the “look-back” time) until the spatial coverage of a given 2-degree box exceeds a 90 percent coverage 
threshold (the inner 0.25-km/pixel mesh is fine enough to enable an approximation of the percent coverage). 
 
Figure 1 shows the overall percentage of 2-degree boxes that reach this coverage threshold as a function of the 
look-back time and the type of LEO satellites used in the coincident pixel alignment procedure.  The addition of the 
three AMSU-B instruments to the three SSMIs and the TMI (7 satellites, dotted line) permits 90% of the Earth between 
60S-60N latitude to be covered with coincident data observations within 15 hours of look-back time, with an average of 
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about 2000 coincident observations per box.  With three SSMIs and the TMI (4 satellites, dashed line), the same total 
Earth coverage is reached after 30 hours, but with an average of 2500 coincident observations per 2-degree box (this is 
due to the fact that the ASMU-B data are coarser than the TMI, and although they may arrive prior to the TMI data, 
they are less in number).  The bottom panel demonstrates that for 90 percent Earth coverage, the average age of the data 
in each 2-degree box is about 4 hours when the 7-satellite combination is used, significantly shorter than the 8-hours in 
the 4-satellites case and 10-hours in the SSMI-only (3 satellites) case.  For comparison, Figure 2 also illustrates these 
same statistics, but with a smaller maximum allowed ?t=5 minutes.  Under these circumstances, it takes about 35 hours 
to achieve the 90% Earth coverage for the 7-satellite case and the average age of these data are about 10 hours.  While 
the smaller time offset is preferred in order to capture as nearly time-coincident data as possible, with the current 
7-satellite configuration it comes with the expense of increased age of coincident data observations.  With this inherent 
tradeoff in mind, all results discussed hereafter used ?t=15 minutes and ?d=10 km in the PMW-IR coincident data 
alignment procedure.   
 
This lookup table update process is constantly ongoing with operationally arriving LEO and geostationary data.  The 
transfer of this information to the stream of steadily arriving geostationary data is then a relatively simple lookup table 
procedure.  For each newly arrived geostationary dataset, the IR channels are map-registered onto a global, 0.1-degree 
rectangular map projection for all pixels whose satellite zenith angle is less than 70 degrees.  For each 0.1-degree pixel, 
the closest 2-degree histogram box and the eight surrounding boxes are located, and an inverse-distance weighted 
average rainrate is computed from these nine lookup table -derived rainrates (this minimizes discontinuities across 
histogram box boundaries).  Lastly, NWP forecast model 850 hPa wind vectors from the Navy Operational Global 
Atmospheric Prediction System (NOGAPS) forecast model are combined with a 2-minute topographic database, and a 
correction is applied in re gions of likely orographic effects on both the upslope and downslope (Vicente et. al, 2002).  
The previous 1-hour time history of the 11-um IR brightness temperature is analyzed for regions of active cloud top 
temperature growth or decay, and scaling factors are applied to intensify and lighten the overall rainrate. The use of a 
common 0.1-degree global map projection for all geostationary satellites greatly speeds up the computation of rainfall 
accumulations, and compensates for the coarser resolution of geostationary IR data at higher latitudes.  At specified 
synoptic time intervals (usually every three hours), the rainfall accumulations are updated as far back in time as desired 
by backwards time-integrating. 
 
The blended satellite technique is autonomous  and self-adapting, and the adjustable parameters are the histogram box 
size, allowable pixel collocation time and space offsets (?t and ?d, respectively), and minimum spatial coverage of 
each box required to initiate its lookup table update.  As additional LEO satellites are added to the blending procedure, 
presumably the histogram box size and allowable space/time offsets can be made smaller, which should better capture 
individual smaller-scale rainfall systems, although this remains to be examined when data from upcoming LEO 
platforms are available.  In operational settings, one or more LEO datasets may be missing or arrive later than a data 
cutoff time.  To limit this, we set a maximum look-back time of 24-hours, which may temporarily disable the blended 
technique over certain parts of the Earth where the overall LEO revisit time is the longest.  We have resorted to using 
only the common 11-um channel at this point since it is common to all current geostationary satellites, but other 
formulations should be used to relate the PMW and IR data to take full advantage of the expanded thermal and solar 
spectral capabilities offered in the MSG and GOES -R series of geostationary satellites.  Already, Marzano et. al. (2002) 
have tested multivariate probability matching and nonlinear multiple regression techniques for the PMW-IR blending.  
We are currently examining the use of the expanded channels aboard the Moderate Resolution Imaging Spectrometer 
(MODIS) in preparation for use with the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared 
Imager (SEVIRI) activation later in 2003 (Schmetz et. al, 2002). 
 
3. VALIDATION WITH THE KMA AWS NETWORK 

The Korean Meteorological Agency (KMA) maintains an operational, densely spaced Automated Weather Station 
(AWS) over the southern Korean Peninsula, consisting of nearly 500 tipping-bucket, uniformly-spaced, one-minute 
updating rain gauges (approximately 40 gauges per 1-degree box).   AWS data were collected during June-August 2000 
along with the individual hourly, instantaneous rainfall datasets produced by the blended satellite technique (the GMS-5 
satellite is the only geostationary satellite that provides coverage and its refresh rate is hourly beginning at 30 minutes 
after each hour, and the Korean Peninsula is imaged about 8 minutes after the frame start time).  Figure 2 depicts the 
shaded color maps of the mean monthly rainrate over the Southern Korean peninsula during June, July and August 2000. 
 
During this time, the NOAA-15/16/17 satellites were not yet incorporated into the blended technique (the three SSMIs 
and the TMI formed the underlying LEO constellation), giving a LEO revisit over Korea of about 4 hours on average 
and 10 hours worst-case.  Considering that an individual satellite observation represents an approximate 0.1-degree area 
average, whereas the gauge measurement represents a small area less than 1 m2 , South Korea is divided into smaller 
boxes, ranging from 0.1 degrees to 3 degrees on a side, where relatively homogeneous gauge distributions are found.  
Due to the inhomogeneity of the rain within the spatial averaging box and very small areas represented by individual 
gauges, a direct comparison of instantaneous (i.e, pixel-based) satellite-based retrievals and gauges is inherently limited.  
For intermittent and sporadic rain events, the rain may fall between but not into individual gauges, or the rainfall pattern 
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may evolve and move between the gauge locations.  Using the AWS network and various IR-based rainfall techniques 
over a one-month period, Oh et.al (2002) investigated the impact of the spatial rain inhomogeneity by analyzing the 
number of rain -detected gauges in individual 1-degree boxes.  They found that the satellite algorithm validation was 
more likely to fail for sporadic and weak rain events when the number of rain-detecting gauges per 1-degree box was 
less than 15.  However, in some cases, isolated convective rain events may be characterized by a small number of 
rain-detecting gauges, so a simple minimum-gauge criterion is not necessarily sufficient in all cases.  In the discussion 
to follow, it must be therefore be remembered that unambiguous interpretation is not always possible with gauge-
satellite comparisons, especially for sporadic rain events. 
 
The instantaneous estimate from the blended satellite technique essentially consists of transferring the past-time 
PMW-IR history (via the lookup tables) to newly gathered IR radiances, whose information content originates at or near 
the physical cloud top height, whereas the gauge data is a purely ground-based observation.  Therefore, to account for 
the fallout time of the hydrometeors, the gauge data were first averaged over time windows varying between +/-1 to +/-
30 minutes, centered about the GMS-5 observation time.   Then, at each spatial resolution, these data were time -
integrated over various time intervals ranging from one hour (the minimum time interval) to 30 days.  That is, the 
original data were fixed at one spatial scale and then integrated over the various time scales, then repeated for the next 
spatial scale, and so on.  This allows the blended technique validation to be performed in a two -dimensional, space-time 
fashion.   Most importantly, the 1-minute time resolution of the KMA network allows individual, instantaneous satellite 
pixels to be paired in time with the corresponding rain gauge pixels prior to any temporal averaging. 
 
For example, Figure 5 shows the scatter plots of the blended satellite (RS) vs. gauge (RG) comparison at a 1-degree 
spatial scale and for six time scales ranging from 1-hour to 24 -hours, where the AWS-GMS time window was fixed at 
+/-10 minutes.  As expected, the correlation improves with longer time averaging, but the bias remains near zero or 
slightly negative, with a large variance.  The 24-hour plot demonstrates that when RG < 1 mm hr-1, the blended 
technique often assigned light rain to regions where RG = 0.  While it is difficult to unravel an exact cause of these 
characteristics, it is possible that this is related to the PMW algorithm rain/no-rain screening.  Over land, a version of 
the NESDIS operational SSMI algorithm (Ferraro et. al, 1997) is used in the Version-5 TMI 2A12 rainfall algorithm 
(Kummerow at.al, 2001).  Under certain conditions, light rain can be misidentified over a variety of Earth surfaces that 
appear to scatter radiation similar to a precipitating cloud (Bauer et.al, 2000; Conner and Petty, 1998; Ferraro et. al, 
1998).  In the automated histogram matching procedure, these (falsely -identified) light rain pixels get paired with their 
corresponding IR TB, which is often larger (warmer) than other localized pixels that were correctly identified as rainfall.  
The end result can at times be a very light rainfall (under 0.5 mm hr-1) that incorrectly gets assigned to regions in 
subsequent IR imagery, until these falsely-identified PMW points are discarded from the suspect 2-degree histogram 
box (usually after the next LEO overpass).   The opposite effect also occurs, when the PMW algorithm rain/no-rain 
screen fails to identify regions of light rain.  That is, these no-rain pixels get paired with a smaller (colder) IR TB 
compared to other localized pixels.  The result is that the zero-rain IR temperature threshold gets assigned too small of a 
value and the lookup table assigns zero or a very small value to subsequent IR imagery.   While we cannot say for 
certain that misses and false alarms by the PMW screening algorithm are the cause of this, one can state that owing to 
its very nature, any caveats of the PMW instantaneous rain algorit hms eventually manifest themselves in the blended 
technique results.  The amount of time that these (or other) PMW data are retained in the blend is determined by the 
tuning parameters described in Section 2 (box size, percent coverage, ?t and ?d). 
 
Figure 3 depicts the results from the analysis at this and other space and time scales in a two -dimensional format, where 
the spatial average and averaging period determines the abscissa and ordinate, respectively.  The correlation, mean bias 
and root-mean-square error (RMSE) are each contoured for AWS time windows (gauge averaging time centered about 
the GMS observation time) of +/-10 minutes (other time windows are not illustrated here).   Different time windows 
produce different results, owing to the variable fallout times of the hydrometeors from within the cloud, and the 
increased number of gauges in the average as the window is widened.  However, there appears to be a sharp 
improvement when the time window is widened to +/-10 minutes, which a typical hydrometeor fallout time in tropical 
clouds (Soman et.al, 1995). 
 
As expected, all three parameters improve as either the averaging period is increased or the grid size is coarsened.  The 
contours do not flow smoothly at the longest time intervals due to the resultant small number of data points available 
from the finite 3-month period.  Likewise, the small size of the Korean Peninsula produces a small number of data 
points when the data are averaged over the coarsest space scales.  The blended technique is biased slightly negative 
(-0.1, or 10% low) once the time interval exceeds 3 days, falling to about –0.35 (35% low) at 3 -hour/0.25-degree scales. 
One possible explanation for the bias behavior is that as the time scale is shortened, extreme heavy precipitation events 
are less likely to be captured by a LEO overpass.  Since the nature of the blended technique is to retain some of the most 
recent rainfall history (a residual “memory effect”),  there is a gradually increasing (rather than sudden) negative bias. 
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Figure 3.   Space-time contour plots of the correlation coefficient, root mean square error and mean bias for an AWS time window average of +/-10 
minutes.  The time window is centered about the time of the GMS satellite observation of Korea.  The abscissa and ordinate of each contour plot 
denotes the spatial and temporal scales, respectively, used to average the gauge data and the blended satellite technique estimated rain. 
 
 
The RMSE is about 0.5 mm hr-1 for time intervals exceeding 3 days, and degrades to near 3.5 mm hr-1 at 3-hour/0.25 -
degree scales.  The correlation coefficient can be as high as 0.8 for 12 -hour averages, but only when the grid size 
exceeds 2.5 degrees.  Most notably, the correlation begins to fall off quickly once the time average drops below one day, 
and/or the spatial scale falls under 1-degree, and this same sort of behavior is evident in the RMSE, and less so in the 
mean bias.  This could be because the RMSE is more affected by the relatively few large precipitation events, whereas 
the correlation is affected by the large number of zero or near-zero rain rate points.  As the time and/or space scale 
shrink, there are fewer heavy rain events, and the large number of zero or small rain rates, which show a large scatter, 
dominates the correlation coefficient. 
 
Inherent in the inner workings of this type of blended technique is a residual “memory effect” whereby a certain amount 
of previous-time PMW information is retained in the statistical blend, and provided to subsequent geostationary update 
cycles.  The effect is dependent upon the LEO revisit time, which at the latitude of Korea is about 12 -hours (worst case) 
for the 4-satellite (3 SSMI and the TMI) constellation.  As mentioned, the current 2-degree box size for the statistical 
matching represents a tradeoff between the overall revisit from the intermittently-spaced LEO satellite constellation 
(longer revisit requires a larger box size) and the need to capture “localized” rainfall characteristics and still have a 
sufficiently large number data points to perform a statistical histogram matching (small scale rainfall requires a smaller 
box size).   The rapid decay of the correlation and RMSE statistics below the daily time scale may be reflecting the fact 
that below this scale, the blended technique estimates are often tuned with rainfall information from a somewhat earlier 
stage (several hours earlier) in the localized rainfall evolution, and don’t always correlate well with the current rainfall 
evolutionary state.  At time scales greater than one day, the correlation remains quite high even at the finest spatial 
scales, suggesting that this type of memory effect may average away past a certain time scale.  While this is a plausible 
explanation, there are certainly other factors at work, most notably the nature of sporadic and intermittent rain evolving 
over a limited number of gauges.  By analyzing the three month period, there are many short time -scale periods that are 
averaged together, some with intermittent, sporadic rainfall and others with more widespread rainfall, therefore the 
gauge-satellite effect should be averaged to some undetermined extent.   Even so, we can state that below some 
minimum combination of space and time scales, there is most likely dependence between the overall LEO constellation 
revisit and the performance of this type of blended technique. 
 
For NWP rainfall data assimilation requirements, the rainfall estimation error should be specified as a function of the 
average rain rate over the estimated space-time interval (e.g, percentage error at 1, 5, 10 mm hr-1, etc). NWP variational 
assimilation techniques typically are based upon a minimization function, which requires knowledge of both the 
forecast and the observation (rainfall analysis) errors.  If the forecast error is large, then the observed rainfall analysis 
will be increasingly allowed to contribute to the model initialization, and vice versa.  The 3-hour/0.25-degree RMSE of 
3.5 mm hr-1 was computed for all rain rates, and this would translate to a 35% error at 10 mm hr-1. 
 
The KMA gauge analysis provided validation over the three month summer interval, which are indicative of summer 
monsoon wet conditions, and were done during a time when the AMSU -B and AMSR sensors had not yet been added to 
the LEO constellation used in the blended technique.  To examine the overall characteristics and performance of the 
technique, a longer validation time interval is needed , preferably one that covers both tropical and mid-latitude rainfall 
regimes and summer and winter seasons. 
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3. CONCLUSIONS  
 
We have presented a series of over-land validation statistics from comparisons between satellite-derived rainfall 
estimates from a blended IR-PMW precipitation technique and ground-based rainfall observations gathered from 
operationally maintained raingauge networks in Korea. The bias, RMS error, and correlation coefficient were computed 
at various space and time scale combinations owing to the gauge density and the 1-minute sampling capabilities of the 
Korean AWS network.  While precise gauge-satellite comparisons are by nature not truly possible, the gauge density 
and the 1-minute sampling capabilities of the Korean AWS network does reduce (but not eliminate) fundamental spatial 
and temporal offsets between observations and estimates, and provides a basis for gathering error statistics at sub-daily 
time scales and sub-one-degree spatial scales.  Finer than approximately 1-day and one-degree time and space scales, 
respectively, a rapid decay of the error statistics was obtained by trading off either spatial or time resolution.  Beyond a 
daily time scale, the blended estimates were unbiased and with an RMS error of no worse than 1 mm day -1.  
 
In general, the blended technique performed very well in the heavier, convective-style rain; over the mid-latitudes, the 
performance suffered for both summer and winter seasons.  The current orographic correction scheme does not always 
flag probable orographic uplift regions (it is dependent upon an accurate forecast analysis of the low-level flow), and 
the enhancement factors do not yet appear to scale enough in regions of very steep terrain.  Suggested improvements 
include a more qualitative usage of the time dimension available from 15-minute update times characteristic of GOES 
and MSG, as one means to capture information on cloud evolution in-between the intermittent PMW overpasses.    
Better characterization of the rainfall estimates between the individual PMW sensor types, and the adoption of one 
satellite as the “reference” satellite rainfall estimate is needed to reduce artifacts that result when the various SSMI, 
TMI, AMSU-B and AMSR rainfall estimates are blended together over short time scales. 
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Daily rainfall data and analysis procedure  
 
The Australian Bureau of Meteorology produces objective analyses of daily rainfall that can be used for hydrological 
applications, validation of model forecasts and satellite rainfall estimates, and climate monitoring. The analyses give 
accumulated daily rainfall for 00 -24 UTC on a 0.25º grid over the land area of Australia. The latitude range of 10ºS to 
45ºS allows tropical, sub-tropical, and mid-latitude regimes to be investigated.  
 
Two rainfall analyses are produced, one in near-real time, and the other a few months later. The operational near-real 
time analysis is based on 9 a.m. gauge observations of 24-hr accumulated rainfall at up to 2000 synoptic and tele graphic 
stations, and is available a few hours after the observations are made. Figure 1 shows the location of rain gauges in 
Australia. The populated regions of eastern and southwestern Australia contain high gauge densities, 5-20 per 
1º latitude/longitude box, while some desert regions in western and central Australia have few or no gauge observations. 
 

 
Figure 1. Australian rain gauge locations. 

 
The 9 a.m. LST observation time corresponds to between 22 and 01 UTC, depending on season and time zone. These 
readings are assumed to approximate the rainfall accumulation between 00 and 24 UTC. Analysis errors associated with 
the timing mismatch are usually negligible, and tend to be very much smaller than those associated with the satellite 
estimates or NWP forecasts that they may be used to validate.  
 
After automatic range and buddy checking to eliminate erroneous data, a three-pass Barnes succes sive corrections 
scheme is used to map the gauge data onto a 0.25º grid over the land area of Australia (Weymouth et al., 1999). 
Analysis is not attempted in regions with no gauge coverage. The Barnes scheme estimates the rainfall a t a gridpoint as 
a weighted average of surrounding observations, where the weights are inversely related to the distance from the 
gridpoint using a Gaussian weighting function. The first pass uses a length scale that is large compared with the 
correlation scale of the data, resulting in a relatively smooth rainfall field. Inner passes, which yield incremental 
refinements to the initial rainfall field, use shorter length scales so that relatively greater weight is assigned to 
observations close to an analysis grid point. The inner passes control the level of detail provided in the analysis, 
effectively acting as a filter for the data. 
 
The operational daily rainfall analyses produced using the 3-pass Barnes scheme have been compared against analyses 
made using more sophisticated schemes such as Statistical Interpolation (SI) and Indicator Kriging (a scheme that uses 
IR satellite data to detect rain-free gridpoints before performing a kriging analysis over the remaining area; Sun et al., 
2002).  Results showed that their bias and RMS errors differed by no more than a few percent. For daily rainfall over 
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Australia (at least), the errors associated with incomplete spatial sampling appear to be much more important than the 
choice of analysis scheme. These errors are investigated further in the next section. 
 
The more complete “climate” daily rainfall analysis incorporates more than 4000 additional gauge observations from 
the Cooperative Network (see Fig. 1), and is produced a few months after the event. The gauge density is improved in 
most regions, increasing to 15-50 per 1º latitude/longitude box in populated areas. The “climate” analysis uses variable, 
as opposed to fixed, length scales to take best advantage of the improved sampling in data-dense regions. In addition to 
being more accurate, this analysis product has reduced bias compared to the near-real time product because the 
observations of zero rainfall from telegraphic stations (normally non-reporting in real time) are included (Weymouth 
et al., 1999). 
 
Analysis errors 
 
The usefulness of the rainfall analyses is limited without some knowledge of their expected errors. This is important for 
using these rainfall estimates in data assimilation and merging schemes, estimating uncertainties in hydrological or 
other products that may use rainfall data as input, and properly accounting for uncertainty in “ground truth” when 
validating other precipitation estimates (e.g., Krajewski et al., 2000). In this section we present some results from an 
investigation on the accuracy of daily rainfall analyses produced using an experimental SI scheme. As previously 
mentioned, the analysis errors differed little from those of the 3-pass Barnes scheme, so the following results can be 
taken as representative of the operational products. 
 
The magnitude of the analysis errors depends to a large extent on how well the observational network samples the 
natural variability of the rainfall. In Australia the correlation length scale (where ρ(x) drops to 1/ e ρ(x=0)) is about 350 
km in winter, when most Australian rainfall is associated with mid-latitude synoptic scale systems, and decreases to 
around 110 km during tropical summer, when convection is the primary regime. This means that in order to adequately 
sample daily rainfall, stations should be closer together in the tropics than elsewhere (unfortunately not the case, see Fig. 
1). As a result analysis errors are expected to be larger there than in other regions and seasons.  
 
Cross-validation techniques are commonly used to compute statistics of analysis errors at the point scale. Unfortunately, 
direct calculation of grid-scale  analysis errors requires large numbers of independent observations. However, by 
making some reasonable assumptions about the independence of analysis errors, it is possible to use an error separation 
method similar to that described in Krajewski et al. (2000) to estimate their magnitudes. 
 
Suppose two independent analyses X1 and X2 are produced by randomly dividing the spatial observations in half and 
analysing each set separately. The variance of their difference is  
 
   var(X1 - X2)  =  var[(X1 - Xt) - (X2 - Xt)] 
 
  =  var(X1 - Xt)  +  var(X2 - Xt)  –  cov[(X1 - Xt) , (X2 - Xt)]                              
 
where Xt is the true value and (X1 -  Xt) and (X2 - Xt) are the (unknown) analysis errors. We can expect the analysis errors 
to be independent of each other, since they were generated from different observations. This means we can neglect the 
covariance term. Given the parallel method of producing the two analyses, we can also expect that their error variances 
are approximately equal, i.e., var(X1 - Xt) = var(X2 - Xt), and, for a sufficiently large observational dataset, a reasonable 
approximation to var(X - Xt), the error variance of the analysis based on all data. We thus arrive at a simple 
approximation for the analysis error variance,  
 

var(X - Xt) = var(X1 - X2) / 2 . 
 
The standard error is the square root of the variance, normalized by the mean value.  
 
This approach was used to estimate analysis errors for the Australian rainfall data. Figure 2 shows the analysis standard 
error σ/R  decreasing with increasing station density as spatial sampling is improved. It also decreases with increasing 
rainfall accumulation. Similar behaviour was demonstrated by Huffman (1997) and others for satellite precipitation 
analysis errors. 
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Figure 2. Standard error (%) in 0.25º grid boxes as a function of summed inner pass weight from the Barnes 
analysis (related to station density), for five ranges of daily rainfall accumulation. 
 
The percent standard error in Fig. 2 can be empirically fit by a function of the form, 
 

2/1ln(%) −++= cRWba
R
σ  

 
where W is the summed inner pass weight, R is the analysed rain accumulation, and the coefficients have the values 
a=65, b=-21, and c=50. This expression can be used to generate error estimates to accompany the rainfall analyses. 
 

 
Figure 3. Annual mean analysis error standard deviation, expressed as a percentage of annual mean rain 
during January-December 2000, for (a) near-real time daily analyses, and (b) “climate” daily analyses. 
 
The spatial distribution of analysis errors (Figure 3) shows that the standard errors average between 25% and 50% in 
eastern and far southwestern Australia, but can exceed 100% in the sparsely sampled regions of central Australia. 
Tropical values range between 50% and 100%, with lower errors in the “climate” daily analyses than in the near-real 
time analyses. Note that errors on any given day are likely to be much lower, or even zero, in areas with no observed 
rainfall, or much higher in the case of regions with convective rainfall.   
 
The analysis errors can be reduced somewhat by spatial averaging. Because the rain field is spatially correlated, the 
error reduction is less than would be predicted for independent samples. For the Australian analyses, averaging from a 
0.25º grid scale to a 1º grid scale decreases the analysis errors by only about 25%. 
 
 
 

(a) (b) 
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Future work 
 
BMRC is working toward producing a combined rain gauge-radar analysis over Australia on hourly and daily time 
scales. The greatest improvements in the daily rainfall analyses are expected to be in the coastal regions of western and 
tropical Australia that have radar coverage. 
 
Recommendations 
 
1. Make use of Australian gauge data and gridded analyses for hydrological applications, validation of NWP forecasts 

and satellite precipitation estimates, and climate monitoring. 
 
2. Provide error estimates with the analyses, to assist users in making the most sensible use of the data. 
 
3. Encourage the development and use of validation methodologies that account for the uncertainties in the “ground 

truth” data. 
 
4. Make use of the full gauge “climate” Australian dataset, not just the values put out on GTS, in producing merged 

rainfall analyses. 
 
Obtaining Australian daily gauge data and gridded analyses 
 
The near-real time daily rain gauge data and gridded analyses can be downloaded via FTP from the Bureau of 
Meteorology’s National Climate Centre at the URL, 
 
ftp://ftp.bom.gov.au/anon/home/ncc/www/rainfall/totals/daily. 
 
The more complete “climate” rain gauge data and analyses, based on up to 6000 observations per day, can be obtained 
on request from the first author.  
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Introduction 

Gridded precipitation data are important information for many applications. The analysis of droughts and floods are 
only two examples.  
 
The quality of estimated precipitation fields depends on many influences. From a pure climatological view the 
precipitation pattern consists of a deterministic and a stochastic part. The first should be subject to deterministic 
methods, whereas the latter should be subject to geostatistical methods. Both kinds of methods should be flexible to 
deal with the regional climatic and geographic conditions as well as with the station density provided. 
 
The Global Precipitation Climatology Center (GPCC) has a large database of monthly precipitation data (over 50.000 
stations worldwide). These data are thoroughly tested for outliers as well as errors in the station meta data like location 
and elevation. For the main portion of these stations precipitation data are available since 1986. However, for some 
1000 stations also longer time series are acquired.  

Aims of the new Project 

It is one aim of a current project to use this large and quality controlled database to achieve more information about the 
optimal way to interpolate monthly global precipitation fields over land, with special regard to the different 
climatological and geographic conditions as well as station density. Furthermore, this knowledge finally may result in 
long time series of best estimates of gridded worldwide precipitation data as well as estimates of their uncertainty. 
 
In a first step local altitude dependencies are estimated and averaged for the Koeppen climate zones each by each and 
for each calendar month see (Fig. 1). Furthermore, averaged local horizontal climate gradients are estimated fo r 
different regions and seasons. As a result it can be seen that the deterministic portion of spatial variability depends on 
the season and region under investigation. This reveals that it should not be neglected as part of the interpolation 
procedure. However, the actual altitude dependency depends strongly on the local. Therefore, the altitude function has 
to be fitted for each grid point and month. 
  
In a second step the empirical semivariograms are calculated again for the different climate zones and calendar months. 
This gives the opportunity to learn about the regional and seasonal scales of precipitation. A comparison of these scales 
with the regional effective station distance should reveal information about the sampling error. Eventually this may be 
used to learn about the station density necessary to obtain reliable estimates under certain conditions. 
 
In a third step different geostatistical methods are intercompared for well defined artificial spatial patterns (see Fig. 2). 
This allows to investigate how well different patterns are reproduced by different methods. Also from this artificial 
examples information can be drawn about the impact of different station densities and distributions, given different 
methods of interpolation. As a result this s tep should offer enough information to decide which method provides the 
most reliable gridded data. Furthermore it may provide the information necessary to investigate the average error of the 
method under certain conditions. 
 
Another point under investigation is the station distribution as well as the amount of stations used to interpolate a grid 
point value. Though more data means a better statistical basis, it also means that more distant stations have to be taken 
into consideration. With respect to this , more data does not necessarily mean better results. Experiments are planned to 
get the optimal number of stations to be used or the optimal distance up to which stations should be taken into account.  
 
By means of a shadow correction stations hidden behind other stations should get less weight in the averaging 
procedures compared to stations that represent a large portion of a grid points neighbourhood. First experiments reveal 
that this leads to a further improvement of the gridded data. 
 
 



 

 75  

 

 
 
 
Figure 1: Investigation of local altitude dependence of precipitation. In this example the altitude dependence 
explains about 12% of variance. Outliers are detected and  marked as strange data. 
 
Dubious data, which may not fit to the group of neighbouring stations should be indicated and treated separately. We 
saw that dubious data can be found by a simple cross check.  
 
Furthermore, the jackknife error should be given for all the estimates in order to provide a measure for the accuracy of 
the actually interpolated value. 
 
Finally all the information gathered from the experiments will be used to obtain an adaptive interpolation procedure to 
optimally fit the local and seasonal climatic conditions, the given station densities and the geographic margins best.  
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Figure 2: Investigation of the influence of station density and interpolation method. For the example of a bell 
shaped precipitation pattern and effective station distances equal to the scale of the bell the regional 
precipitation is overestimated by a factor of 2. Moreover, the shape is not correctly reproduced. 
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IN THE PERSIANN SYSTEM  
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ABSTRACT 
 

Error analysis and reduction for satellite-based global precipitation data become increasingly important with 
the growing availability and popularity of such data. At the University of Arizona (Tucson, AZ USA), a system of 
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) has been 
developed to provide global, real-time precipitation monitoring at relatively high temporal and spatial resolutions 
(6-hourly and 0.25 °  × 0.25°) using information from multiple sensors and multiple satellites. 
(http://www.hydis.arizona.edu). A strategy for PERSIANN data quality control and improvement has been made to 
guide our ongoing research. In this workshop, our discussion focuses on the “error estimation” of the PERSIANN data 
that is defined as the PERSIANN precipitation estimates associated with the observations (i.e., Pest – Pobs). Another 
equally important issue about the “observation error” (i.e., Pobs – Ptrue) will not be discussed here. However, according 
to following relation: 
 

 )()()( trueobsobsesttrueest PPPPPP −+−=−                                                              (1) (Estimation Error 

of Rain) =  (Error Estimate) +  (Observation Error of Rain)  
 
“error estimate” will lost its significance to represent the “estimation error of rain”, if the “observation error of rain” is 
large and unknown. 
  
 In order to conduct qualified error analyses, we plan to use 15 validation sites worldwide (Fig. 1); each of these 
observation sites have an area size greater than 0.25 ° × 0.25° and include continuous radar and/or rain-gauge rainfall 
data for three months. For gauge-only sites, we also require at least 30 rain gauges per 0.25° × 0.25° square area. The 
validation problem becomes even serious over oceans and mountains because of the lack of reliable ground-based 
measurements. Precipitation radar (PR) onboard the TRMM satellite provides unique data for the cross -examination of 
satellite precipitation estimates (in case the PR data have yet been used in the algorithms). Fig. 2 illustrates the sampling 
frequency of TRMM/PR in June 1999, in which most equatorial areas only receive less than 15 (instantaneous) 
overpasses per month, and the number of sampling increases to about 30 times per month toward the edges of the PR 
coverage area. Such low-sampling frequency is the key issue unsolved for the error estimate of satellite rainfall.           
  

Two categories of investigations are planned to evaluate and enhance the PERSIANN data quality: (1) the 
statistical analyses of the PERSIANN data, and (2) the model (system) analyses, namely the selection and classification 
of input variables used to retrieve surface rainfall and the model structure. Model analysis is a significant issue, but will 
not be discussed here. 

  
The statistical analyses include two successive procedures of bias analysis and variance analysis. 

In comparison with GPCC global (monthly, 1° × 1° gridded) rain-gauge data, systematic positive bias (overestimation) 
was discovered in the PERSIANN rainfall estimates over land. Using ratios of concurrent GPCC and PERSIANN 
rainfall amounts at monthly, 1° × 1°  resolution as the correcting factors, the biases of PERSIANN estimates at different 
resolutions are adjusted proportionally. In Fig. 3, the NEXRAD rainfall data (NCEP/Stage IV, in July and August 2001) 
over the continental United States within the domain of 20°N-50°N, 80 °W-120°W are used as independent references to 
evaluate the RMSE (Root Mean Square Error) and bias of the PERSIANN daily and 0.25°  × 0.25°  estimates. The 
results indicate that the simple process is effective and necessary for the PERSIANN data, especially when the 
correcting ratios are large, such as in the month of July. 

   
Preliminary variance analyses for the PERSIANN data explored certain important features common to satellite 

rainfall estimates. (a) Variance of rainfall estimates increase with the estimated rain rates. Based on this feature, rainfall 
estimation algorithms should apply different input-rainfall retrieval relations within different ranges of rain rate. Fig. 4a 
illustrates that, as the variation range of infrared brightness temperature (the major input variable of PERSIANN) is 
divided into smaller subdivisions, the estimated rain rate (mean) becomes more specified, and the estimation uncertainty 
(standard deviation) is also changed. In Fig. 4, each time an interval of brightness temperature is divided into two 
subdivisions, the mean and standard deviation in the colder subdivision (on the left side) increase, while both values in 
the warmer subdivision decrease. This indicates that the variance of estimates monotonically increases with the mean 
value of the rainfall estimate. Fig. 4b shows that the variance over the entire range is improved slightly with the increase 
of the subdivision number, especially when the split is made in high standard deviation intervals. Therefore, more 
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research attention should be paid on intensive rainfall estimation. Fig. 4b also shows that, when the input is improved 
by adding visible cloud images, the variance reduces substantially. (b) Variance of estimate can be reduced through 
averaging rainfall over time and space scales. In an experiment, the PERSIANN data over three 4° × 4° areas (Fig. 5) 
are averaged from daily and 0.25° × 0.25° resolutions down to monthly and 1° × 1°  through a series of spatial and/or 
temporal integrations. The variances calculated from different scales are plotted, which forms a similar monotonic 2D 
surface in the time and space coordinates for each individual area. In Fig. 5, the variance of rainfall estimate is quasi-
linearly reduced over spatial average, while the variance shows sharp reductions from 1- to 5-day integrations, and a 
stable, decreasing gradient from 10-day or longer integrations. Obviously, this is good news for large-scale climate 
analysis; however, it should be mentioned that the major reason for the uncertainty improvement is because of the 
involvement of a large number of no-rain events through the average, and that information about the distribution of high 
rainfall intensity has been smoothened through the same processing. 

  
In summary, variance analysis for unbiased data is the basis for many statistical techniques of error analysis, 

such as merging of multiple precipitation data sets, optimal interpolation, Kalman filtering, and variational approaches. 
Quantitative characterization of variance in satellite rainfall estimates in different conditions and at different scales 
provides the much-needed information for the scientific uses of these data in the methodology of comparison, 
validation, and assimilation.  
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Operational processing, quality-control and analysis of precipitation data at the GPCC 

Udo Schneider and Bruno Rudolf, Deutscher Wetterdienst, Offenbach a.M., Germany 
 

1 Background and objectives 

The main task of the GEWEX Global Precipitation Climatology Project (GPCP) is the compilation of global 
gridded precipitation data sets on the basis of the available observing systems, i.e. conventional surface net-
works and remote sensing data. The products are required for verification of global climate model simulations, 
the investigation of climate variability and special phenomena such as El Niño/Southern Oscillation, as well as 
the determination of the Earth's water balance and budgets (WCRP, 1990). 

The GPCC (Global Precipitation Climatology Centre) is the in-situ component of the GPCP. Its function within 
GPCP is the analysis of global land -surface precipitation by interpolation of raingauge data on an operational 
basis. The specific requirements are: 
Ø High accuracy of the gridded results (desired error of monthly precipitation totals < 10%), 
Ø Gridded analysis results are accompanied by information on analysis quality/error estimates. 
 
The major problems in this context are: 
Ø Errors in the reported precipitation data and station meta information, 
Ø Sampling errors (depending on the variability in the precipitation field and the density of the station network), 
Ø Systematic errors in raingauge-measurements. 
 
Dealing with the difficulties mentioned above the following points are very important: 
Ø A thorough quality-control (QC) of precipitation data and station meta information, 
Ø A high density and a good spatial coverage of the station network, 
Ø Analyses have to be corrected for the systematic gauge-measuring error. 
 
2 GPCC data base 

In-situ rain gauge measurements still provide the most re liable information to analyse area -mean pre cipitation 
for the land-sur face. All station meta data, as well as the precipitation data are archived in an Oracle-based 
relational data base management system (RDBMS). In merging the data from different sources the quality-
control (QC) and harmonization of the station meta information is crucial. A thorough QC is necessary to 
detect errors in the station meta data (especially geogr. coordinates) and a harmonization is required to 
ensure consistency of time series and to avoid dublettes, as far as possible, in the merged data set.  
 
2.1 Near real-time GTS  data  
 
Via the WMO World Weather Watch Global Telecom munication System (GTS) data can be obtained near 
real-time from synoptic weather reports (at least with a daily resolution) and monthly climate reports. Monthly 
precipitation data are routinely obtained at GPCC from 3 sources: (1) monthly totals calculated at GPCC 
from SYNOP reports received at DWD, Offenbach, (2) monthly CLIMAT reports received also at DWD, 
Offenbach, and (3) monthly totals calculated at CPC/NCEP from SYNOP reports received at NCEP, 
Washington DC. 
 
The data from these sources, which are checked and merged by GPCC in order to improve the spatial 
coverage and data quality, form the basis of its monitoring of global monthly precipitation (see section 5). 
The total number of stations with monthly precipitation data available via GTS has somewhat increased over 
time and has reached ca. 7,000 stations during recent years (Fig. 1, left). 
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Fig. 1: Availability of precipitation data as a function of time since 1986 for (left) the data received 
via GTS and (right) GPCC’s full data base including the delivered national/regional data 
collections. 
 
 
2.2 GPCC’s Full data base 
 
Owing to the large variability of precipitation in space and time the GPCC is acquiring additional precipitation 
data from national weather services, hydrological institutes etc. to enlarge the data base. So far, institutes 
from about 160 coun tries have supplied additional data on a voluntary basis, following WMO requests and 
bilateral contacts of GPCC. GPCC’s ful l da ta base includes monthly precip itation to tals of more than 50,000 
sta tions for which any monthly precipitation data are available in the period since 1986. According to the 
GPCP Implementation and Data Manage ment Plan (WCRP, 1990) 1986 originally was  defined as the 
starting year for the evaluation period. 
 
The year with the best data coverage is 1987 with data of ca. 41,000 stations available. The de crease during 
the last years (ca. 28,000 stations in 1995, less thereafter) is caused by the delay of the data delivery and 
the time required by the GPCC to process and check these data sets before loading them into the RDBMS . 
 
2.3 Historical extension of GPCC’s data base 
 
Following recom mendations from GCOS, GEWEX and CLIVAR the GPCC is working on the historical 
extension of its data base. Therefore GPCC, in co-operation with the University of Frankfurt a.M., in Oct. 
2001 started a research project* 10 „Variability Analysis of Surface Climate Observations“ (VASClimO), which 
is aiming at the following main goals: 
Ø the compilation of a comprehensive global climate data base for precipitation, snow cover, surface air 

temperature (average and extremes) and mean sea level pressure, including existing historical data 
collections and additional  data to be acquired (performed at GPCC) and 

Ø a detailed statistical analysis of the data set (mainly performed at Univ. Frankfurt a.M.).  
 
The subproject at GPCC can build upon the data base available at the GPCC consisting of precipitation data 
and meta data of more than 50,000 stations world-wide. However, most of the time series start as late as 
1986. Some large data collections already available at GPCC, such as from CRU (Univ. East Anglia, 
Norwich, UK), GHCN (NCDC, Asheville, NC) and FAO (Food and Agriculture Organization of UN, Rome, 
Italy) are including a large amount of historical climate data. These data collections will be integrated into the 
GPCC data base to cover also the historical period (Fig. 2). Some time series are even extending back to the 
early 18 th century.  
  

                                                 
*10 The project is sponsored within the German Climate Programme (DEKLIM) by the Federal Ministry for Science 
and Education of Germany. 
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Fig. 2: Availability of precipitation 
data (number of stations with full 
year of data) as a function of time 
for the GHCN, FAO and CRU 
precipitation data set, as well as for 
the GPCC data base. 

 
These data sets are currently quality-controlled and loaded into the database (11,868 precipitation time 
series from CRU, 22,654 precipitation and 7,280 temperature time series of the GHCN, as well as 13,530 
precipitation and 5,996 temperature time series of the FAO). Checking the historical data collection from 
CRU and loading into the GPCC data base has almost been completed. Several significant errors in the 
station meta data have been detected and could be corrected (examples are given in section 3 and in the 
presentation). Che cking the station meta information of the other historical data collections and loading them 
into GPCC’s data base is in progress.  
 
3 Quality-control and harmonization of station meta information 

The GPCC has developed a quality-control (QC) system consisting of different levels. The focus here is lying 
on the QC of the station meta data. The first step is a pre-control of the station coordinates performed during 
the pre-processing and reformatting of the individual national/regional data sets and updates delivered to the 
GPCC using the software CLIDAVIS displaying the station locations and country borders. Station co-rdinates 
of the global data collections can be controlled using a polygon check method testing whether the stations of 
a country are lying within the polygons representing the border of the corresponding country or not. 
 
The central element in checking the meta information (especially the geogr. coordinates) of the stations is 
the intercomparison of the meta data in the input data files with the station catalogue (more than 50.000 
stations) included in the RDBMS during the loading process. The procedure for this will be presented at the 
meeting and is briefly outlined in the following. 
 
First each station record in the input data file undergoes a check of the validity of the geogr. coordinates, 
elevation and the country code (Alpha3-code). For each station record in the input data file similar stations 
are selected from the data base (DB) system. If the station meta data (WMO-ID, Nat. No., geogr. coordinates, 
name) is identical and the elevation of the DB station is within +-10 m of the station elevation in the data file 
being loaded, the data are assigned automatically to the corresponding DB station. 
 
Alternatively the selected similar stations  are grouped according to the degree of similarity in an “Inner Pool” 
(stations with good agreement) and an “Outer Pool” (stations with less good agreement). These data pools 
are evaluated further. In case of a very close matching with the DB stations (i.e. in the geogr. coordinates a 
difference of 0.01° is tolerated) the data are assigned to the corresponding DB station. 
 
If there is no station with similar meta information in the DB system and no station in the vicinity, a new 
station record is inserted into the DB. 
 
However, in many cases only part of the station meta information in the input data set is identical to that of 
DB stations, whereas part of the information differs (for example due to typing errors or rounding effects in 
the geogr. coordinates, a different spelling of station names etc.). These unclear cases station (“UCS”) have 
to be clarified manually. The procedure displays all stations with similar meta data selected from the DB on a 
screen. Then an expert has to decide whether the data can be assigned to a DB station or if a new station 
record has to be inserted. In some cases the meta information in the data base has to be corrected; however 
in most cases where discrepancies occur these can be attributed to erroneous meta data in the input data 
sets. All manually clarified cases with an assignment to a DB station are stored in the UCS library, so that the 
system is learning and exactly the same case hasn’t to be treated again. 



 

 82  

4 Method used for operational analysis of precipitation at GPCC 

GPCC is using a spherical adaptation of SPHEREMAP (Shepard, 1968) for applications on a global scale 
(after Willmott et al., 1985) for the interpolation of the irregularly distributed raingauge measurements to a 
regular grid (0.5° resolution). The interpolation method is based on an inverse distance weighting scheme, 
taking the directional distribution (clustering) of stations also into account. 
 
Following external studies (Legates, 1987, 1991; Bussieres and Hogg, 1989) and internal inter comparison 
studies (Rudolf et al., 1992, 1994) the SPHEREMAP method was selected and implemented at GPCC in 
1991 for operational objective analysis of global precipitation. These studies indicated the SPHEREMAP 
method being particularly suitable in analysis of global precipitation climatologies. In an intercomparison 
study of 4 different interpolation schemes (Bussieres and Hogg, 1989) it was the best of the empirical 
schemes and did a job almost as well as Optimum Interpolation.  
 
The construction of gridded fields of area-average precipitation consists of 2 major steps: (1) interpolation of 
the irregularly distributed raingauge observations onto points of a regular grid and (2) to convert the grid 
point values to area-averages for each grid box. The area-average precipitati on on a 0.5° grid is calculated 
by averaging the grid point values at its 4 corners. Area-average precipitation on a coarser grid (1° or 2.5°) is 
then calculated as the area -weighted average over the corresponding 0.5° grids.  
 
5  GPCC products 

Near real-time “Monitoring Product” 

The “Monitoring Product” is based on data received via the WMO GTS (ca. 7,000 stations, details see 
section 2.1). These global analyses of monthly precipitation are generated on a 1° and 2.5° grid and form the 
in-situ basis of the combined satellite-raingauge data sets of the GPCP (Huffman et al. 1997). Generally the 
analysis procedure (including a high-level quality-control) is continuing on a routine monthly basis and the 
monitoring product is available about 1 to 2 months after the observation period. The “Monitoring Product” is 
now covering the period January 1986 up to Dec. 2002 and can be downloaded via Internet using the 
redesigned GPCC-Visualizer: 
http://gpcc.dwd.de/visu_gpcc.html 
 

Non real-time “Full Data Product” 
A re-analysis based upon the full data base („Full Data Product“) has been carried out for the period January 
1986 up to December 1995 (ca. 28,000 to 40,000 stations). The results have been calculated on a 0.5°-grid 
(and 1°-grid) and have been provided to NASA/GSFC for publication on the ISLSCP-II initiative CD-ROM. 
After future expansions of the data base the re -analysis will be repeated from time to time. A comparative 
analysis to the Monitoring Product has been performed (section 6). 
 
Both products up to now are accompanied by bulk correction factors to compensate for the systematic 
gauge-measuring errors, that have been derived by Legates (1987) for climatological conditions. An 
improved method for the correction of the systematic gauge-measuring error taking into account the weather 
conditions during the given month is in work. 

 
6 Intercomparison of “Monitoring Product” and “Full Data Product” 
 
The precipitation differences between both products are large where the precipitation itself or the gradient is 
large, and where the “Full Data Product” is based on significantly more rain-gauges than the “Monitoring 
Product”. In Fig. 4 area-average monthly precipitation for the earth’s land -surface is shown for the 
“Monitoring Product” and the “Full Data Product” over the period Jan. 1986 to Dec. 1990. The area -average 
monthly precipitation for the “Full Data Product” is always slightly higher (up to ca. 5%) than for the 
“Monitoring Product”. One reason may be that the heavy rainfall events, which generally are quite local in 
extent, are depicted better by a dense station network. Regional differences vary largely depending on the 
station density (number of raingauges per grid) and the location. This emphasizes the importance of a high 
density of the station network, too. 
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Fig. 4: Area-average monthly precipitation for the earth’s land-surface for the “Monitoring Product” 
and the “Full Data Product” over the period Jan. 1986 to Dec. 1990. 

 
7 Conclusions 

Experience of GPCC with the processing and evaluation of the many national or regional data sets received, 
as well as of the global data collections (i.e. CRU, FAO, GHCN) shows that a thorough QC not only of the 
precipitation (climate) data, but also of the station meta data is crucial , because of frequently occuring errors. 

Very important in this context is also the harmonization of station meta data in merging the data sets from 
different sources to ensure consistency of time series and to avoid dublettes, as far as possible, to get the 
best possible data base. 

Compensation of the systematic gauge-measuring error is important in conventional measurements.  

The analysis method SPHEREMAP is in operational use at GPCC since ca. 10 years. The GPCC is planning 
to implement a new analysis method; the selection of a new analysis technique has to be based upon 
statistical investigations and intercomparison studies. The meeting will be very helpful in this process. 
However, a new analysis technique has to be suited for operational application and the analyses for the 
“Monitoring Product” and the “Full Data Product” will have to be repeated then using the new methodology to 
create consistent data sets. 
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1. Introduction 
 
Tropical Rainfall Measuring Mission (TRMM) satellite launched in December 1997 is equipped with the first space -
borne precipitation radar (PR).  There are several advantages of TRMM PR.  First of all, it provides three dimensional 
rainfall structures, which enables more accurate classification of convective and stratiform rains than before.  Secondly, 
since TRMM is unsyncronous with the sun, it can observe diurnal cycle of the precipitation. 
   
Figure 1 shows three-year average diurnal cycles of rain in the equatorial belt of 10N-10S, analyzed separately for those 
over ocean and those over land (Takayabu, 2002).  It was indicated that with a 0.3mm/hr rain-top detection thresholds, 
convective:  stratiform ratio in total rain are 50:50 over ocean, and 63:37 over land at the 2-4km level.  Stratiform clouds 
at these latitudes consists primarily of anvil clouds of mesoscale systems.  It was also noticed that convective and 
stratiform rains over ocean experience almost synchronous diurnal cycle with a maximum in the early morning and a 
minimum in the afternoon.  Over land, on the other hand, a significant afternoon peak in convective rain corresponds to 
the afternoon shower, but the stratiform rain does not have the corresponding increase in the afternoon but has a 
maximum in the midnight.  These results indicate that rain over ocean is dominated by well organized mesoscale 
convective systems as shown by previous studies ( e.g. Houze, 1977, Nesbitt et al. 2000), while that over land consists 
of two types of rain; one is the afternoon shower which is not  as well organized as mesoscale systems, and the other is 
organized systems which is enhanced from midnight to early morning.  The emphasis of this analysis is on the 
quantification of precipitation characteristics. 
 
In this report, we aim to examine regional and seasonal  variations of rain characteristics, focusing on several indices  
which became available with TRMM PR; stratiform rain fraction, convective/stratiform rain intensity, convective/ 
stratiform rain area, etc.   
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Mean diurnal variation of the convective rain 
(solid lines) and of the stratiform rain (broken lines) for the 
oceanic pixels (left) and for the land pixels (right).  The middle 
panels show the conditional mean diurnal variations under the 
condition of the pixels are rainy.  The bottom panels show the 
sampled numbers for each classes.  Error bars indicate the 99% 
confidence intervals but plotted away from the mean values, not 
to obscure the mean values.  
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2. Data 
 
In this study, rain rate profiles, rain flags, and method flags obtained from TRMM PR2a25 version 5 archives 
are utilized.  Rain rate data consist of 80 vertical levels from 250m to 20,000m with a vertical resolution of 
250m.  Classification of rain basically follows rain flags which is determined in the PR2a23 algorithm based 
both on vertical method with bright-band detections and on horizontal method.  Note that an alteration of the 
flag from the shallow sporadic stratiform rain to shallow convective rain is made, following the indication by 
Schumacher and Houze (2002, personal communication).  Method flags are used to obtain the surface 
information.  Rainy columns are distinguished with a rain-top threshold of 0.3 mm/hr.  Most of the statistics in 
this report are done with only nadir data among 49 rays, except for Fig.2 which consists of all 49 ray data. 

 
Analysis period is three years from 1 January 1998 to 31 December 2000.  From January to May 1998 is in 
the midst of 1997/98 El Nino period.  EC MWF operational analysis data for the same period are also utilized 
to examine the background meteorological conditions. 

 
3. Seasonal Variations in Stratiform Rain Fraction 
 
It has been shown that the stratiform rain fraction is larger over ocean than over land in general (see Fig. 1).  
However, there are finer variations over ocean as well as over land.  In order to examine in details, we 
divided the analysis period into northern hemisphere monsoon (June -November, referred to as NHM) and 
southern hemisphe re monsoon (December-May; SHM) seasons. 
 
Figure 2 shows stratiform rain fraction maps for four seasons.  We can observe clear seasonal variations.  
Especially when we focus on continental monsoon regions, such as South America, Australia, South Asia, 
and Africa, it is found that stratiform ratio is larger in rainy seasons and smaller in dry seasons.  Over the 
ocean also, there is a tendency that stratiform ratio is larger over the summer hemisphere than the winter 
hemisphere.  Note that the top panel is for January-May 1998, which is during the ENSO warm event.  It is 
noticeable that the stratiform ratio over the central Pacific is significantly larger than other seasons, which 
implies that lager portion of rain is associated with well organized systems over the warmer water. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2  Maps for the stratiform 
rain fraction depicted in color 
shades for four monsoon seasons. 
SHM, NHM, SHM, NHM from 
top to bottom.  Reddish  colors 
indicate larger fraction of 
stratiform rain, while bluish 
colors indicate more convective 
area.  Note that the top panel 
shows the condition during the 
warm El Nino event. 



 

 86  

Next, in order  to understand such seasonal variations in precipitation characteristics in relation to 
atmospheric conditions, we examined the ECMWF analysis data.  Six continental monsoon regions and 
three oceanic monsoon regions are selected as shown in Fig.3, and regional and 13-day running mean time 
series are constructed with PR2a25 rain data as well as with ECMWF analysis data.  These averaging are 
necessary to overcome the sampling insufficiency due to the small swath width of PR.  Figure 3 shows a 
scatter plot of stratiform rain fraction against the 500hPa humidity.  Significant correlations are found 
between stratiform rain fraction and mid tropospheric humidity, both for continental monsoon regions 
(coefficient=0.66) and for oceanic monsoon regions (0.60). Not shown here but mid-to-upper-level humidity 
fields are well correlated to this stratiform rain fraction. 
 
Considering that mid-to-upper troposphere is moistened mainly by anvil clouds, it is indeed a natural  result.  
Still, we would like to consider two points related to this fact.  First, since correlation is quantified, we may 
induce atmospheric humidity from observations of the stratiform rain fraction.  Second point is that in the 
rainy season when the troposphere is more humid, the optical depth for the long wave radiation is thicker 
due to larger amount of water vapor.  Then the atmospheric radiative cooling becomes top-heavier in the wet 
season than in the dry season (e.g. Fig.4).  Since ‘convective heating’ associated with organized mesoscale 
systems consists of real convective heating and anvil heating, larger stratiform rain fraction results in 
top-heavier ‘convective heating’ .  We would like to point out that top-heavier ‘convective heating’  is in the 
sense of balancing the top-heavier radiative cooling in the rainy season, and the other way round in the dry 
season. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Statistics in Seasonal variation of Precipitation Characteristics 
 
Precipitation characteristics can be also examined with diurnal variations.  Figure 5 compares those in the 
wet season (hereafter summer) and dry season (hereafter winter) for tropical northern hemisphere (20N-Eq, 
at all longitudes). Over the ocean, convective rain intensity is larger in summer than in winter by factor 1.25 
in average (see Table 1), while stratiform rain intensity is not much different.  At the same time, the 
stratiform/convective ratio of the rain area increases by factor 1.27. As a result, total rain amount is larger in 
summer with a slight increase of stratiform rain fraction.  It is notable for the precipitation over ocean, that 
there is little dependence of the seasonal change on hours of the day (Fig. 6).   

 
On the other hand, over land, summer/winter contrast in convective rain intensity and 

stratiform/convective area ratio are both found to be smaller (Table 1).  Examining the monthly time series 
(Fig.6), there is considerable seasonal change in the convective intensity but not in the latter.  The small 
contrast for convective intensity in Table 1 is attributable to the definition of two seasons; the value already 
increases in early summer from April to May which is included in our ‘winter’ .  Significant dependence on 

 

 

Fig. 3  Scatter diagram between ECMWF humidity (g/m3) and 
stratiform rain ratio.  Both values are applied averaging in the 6 
continental and 3 oceanic monsoon regions indicated in the 
above map and 13-day running means.  Green dots indicate 
those for continental regions and blue dots indicate those for 
oceanic regions.  Correlation coefficients are 0.66 and 0.60 for 
continental and oceanic data, respectively.  

 

Fig.4 Humidity profiles obtained from 
ECMWF operational analysis (a) and cloud-
free-sky radiative cooling (K/day) profiles 
calculated with ECMWF atmospheric data (b) 
over South American monsoon region.  Red 
curves indicate those for wet season and green 
curves for the dry season.                  
 

 

wet 
dry 
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seasonal change among the hours of day is found for precipitation characteristics over land (Fig.6).  Smaller 
variations in convective intensity and in stratiform/convective ratio in area are found in the afternoon 
(15-18LT), while much lager variation is found for early morning (00-03LT) rain. This result may be an 
indication that nighttime rain has separate origins from afternoon showers.  
 
Note that as seen in Table 1, the stratiform rain fraction is slightly less than 50% over ocean, while slightly 
less than 40% over land, in general.  However, only southern hemispheric summer over land, the value 
(43%) is larger than usual.  It is attributable to Southern American rain which is quite unique in characteristics.    
   
It may be emphasized that there is a tendency that stratiform/convective ratio in area increases in accord 
with the intensification of convective rain in warmer seasons, especially over the tropical ocean .  And it 
seems to be in the opposite sense from Lindzen et al. (2000)’s iris hypothesis, although not directly 
addressing the issue.  Over the tropical land, characteristics of the afternoon shower vary little with season, 
while those of night-to-early-morning rain shows similar tendency as those over ocean. 
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Fig. 5 Same as Fig. 1 but 
for those over  tropical 
northern hemisphere 
region (20N -Eq, all 
longitudes), for NHM 
(left ) and for SHM 
(right) seasons.  NHM 
composite consists of 18 
months: June-November 
in 1998, 1999, and 2000, 
while SHM composite 
consists of 12 months: 
Dec 1998-May 1999, and 
Dec 1999-May 2000.   

Fig. 6 Monthly mean time 
series for indices representing 
precipitation characteristics. 
Values are, convective and 
stratiform rain intensity 
(upper), stratiform / convective 
rain area ratio (middle), and 
stratiform rain fraction in the 
total rain amount (bottom), 
over the tropical northern 
hemispheric ocean (a), and 
land (b).  Thick lines with dots 
indicate those for daily mean 
values, while solid lines are for 
03-06LT, dotted lines are for 
15-18LT. 
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   Ocean   Ocean   Land   Land 
20N-Eq, all longitudes Summer(NHM) Winter(SHM) Summer Winter 
meanConv (mm/hr) 0.087 (51%) 0.056 (53%) 0.093 (62%) 0.048 (64%) 
meanStrat (mm/hr) 0.082 (49%) 0.049 (47%) 0.057 (38%) 0.027 (36%) 
C-intensity (mm/hr) 5.27   [1.25*w ] 4.20 11.1    [1.09*w] 10.2 
S- intensity (mm/hr) 1.54   [1.08*w] 1.43  1.82   [1.08*w]  1.68 
Cintns/Sintns 3.42   [1.16*w] 2.94  6.09   [1.00*w]  6.08 
Sarea/Carea  3.23   [1.27*w]  2.54  3.70   [1.08*w]  3.42 
Eq-20S, all longitudes Summer(SHM) Winter(NHM) Summer Winter 
meanConv (mm/hr)  0.065 (53%)  0.035 (54%)  0.100 (57%)  0.061 (64%) 
meanStrat (mm/hr)  0.058 (47%)  0.030 (46%)  0.076 (43%)  0.034 (36%) 
C-intensity (mm/hr)  4.38   [1.48*w]  2.96 10.4    [0.95*w] 11.0 
S- intensity (mm/hr)  1.50   [1.13*w]  1.33  1.77   [1.00*w]  1.76 
Cintns/Sintns  2.92   [1.31*w]  2.23  5.85   [0.94*w]  6.24 
Sarea/Carea  2.59   [1.33*w]  1.95  4.44   [1.29*w]  3.44 

Table 1 Statistics of precipitation obtained from TRMM PR2a25 data. Values are average contribution of convective 
rain to total rain rate, same for stratiform rain, convective rain intensity, stratiform rain intensity, convective/stratiform 
intensity ratio, and stratiform/convective area ratio, from top to bottom.  Note that the values for stratiform area and 
stratiform intensity are sensitive to the threshold of rain detection, while others are not. 



 

 89  

MULTISENSOR-MULTISCALE PRECIPITATION DAT ASETS AND MODEL VERIFICATION 

Efi Foufoula-Georgiou 
St. Anthony Falls Laboratory, University of Minnesota 

Mississippi River at 3rd Avenue SE 
Minneapolis, MN 55414, USA. 

e-mail: efi@tc.umn.edu  
Tel: +1-612-626-0369. 

1.  Introduction 

 Multisensor validation of precipitation involves comparison of precipitation estimates at different scales, e.g., 
comparison of 20 -30 km averages from a satellite to 2-km averages from radars to point observations from raingauges, 
and often to a numerical model output at another scale.   A major problem arising when spatial averages of precipitation 
at one scale are compared to averages at another scale is the fact that precipitation variability is scale-dependent (e.g., 
see Fig. 1).  How this variability changes with scale is a function of the inherent characteristics of the storm and varies 
with storm type.  Moreover, even the uncertainty of the estimates depends on scale, and it differs from sensor  to sensor. 
 

 In a recent study, Tustison et al. 
(2001) demonstrated the importance of 
accounting for the multiscale variability of 
precipitation in QPF verification studies and 
showed that typical methods used to change 
the scale of observations to the scale of the 
model estimates impose a 
“representativeness error” which is nonzero 
even in the case of  “perfect” model 
estimates.   We propose the development of 
a rigorous methodology, which can 
explicitly account for the scale-dependent 
variability and uncertainty of  precipitation 
estimates in any study involving 
comparison or merging of  multisensor 
observations.   
 

2.  Background on the proposed methodology: Scale-Recursive Estimation 

 The proposed methodology largely utilizes a stochastic scale-recursive estimation (SRE) technique introduced 
by Chou et al. (1994).  This technique can optimally merge observations of a process at different scales while explicitly 
accounting for their uncertainty and variability at all scales.  It requires the specification of a model (called multiscale 
model) describing how the process variability changes with scale.  This multiscale model is defined on an inverted tree 
structure (see Figure 2) and the estimation algorithm is developed along this tree in two steps.  One step involves the 
multiscale model in its coarse-to-fine scale form: 

 
X(λ) = A(λ)X (γλ) + B(λ)W(λ)     (1) 

 
where ? ?is an index to specify the nodes on the tree, ? ?  represents the node on the tree directly above the node 
specified by ? ,  X(? ) is the state of the system at scale ? , A(? ) and B(? ) control the scale-to-scale variability of the 
process, and W(? ) is a normally distributed driving noise.  This model may be used to describe any process whose 
coarse-to-fine scale dependence can be expressed in a linear form. The second step of SRE involves the fine-to-coarse 
scale form of the model: 
 

X(γλ) = F(λ)X(λ) + W*(λ).     (2) 
 
The parameters F(? ) and W*(? ) are defined by A(? ) and B(? ) by manipulation of (1) and (2). The incorporation of the 
measurements into the multiscale model is done via the measurement equation 
 

Y(λ) = C(λ)X (λ) + V(λ)      (3) 
where V(? ) is a normally distributed measurement noise which characterizes the error variance of the measuring 
instrument and C(? ) provides the relation between the observed quantity and the state.   
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Figure 1.  Radar-observed precipitation (left) from the WSR-88D 
(NEXRAD) radar KICT in Wichita, Kansas on 17 August  1994, along with 
the standard deviation of non-zero precipitation as a function of grid scale. 
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Equations (1-3) form the basic 
equations for the scale-t o-scale 
evolution of the process and the 
inclusion of its measurements.  Figure 
2 illustrates the inverted tree, the scale-
to-scale composition of the process, 
and how measurements are placed on 
the tree for inclusion in the multiscale 
estimation. 
  
The multiscale recursive estimation 
algorithm consists of two steps: 
filtering and smoothing.  The filtering 
step uses Kalman filtering, 
incorporating the measurements of the 
process with (3) and propagating the 

estimates from fine-to-coarse scales with 
(2).  The second step consists of 
smoothing in which the estimates from 
step one are merged with those predicted 
from (1) along the coarse-to-fine path on 

the tree.  This algorithm has the advantage that it is extremely computationally efficient due to its recursive nature. This 
is especially important with large data sets available at many scales, such as those available for rainfall (e.g. raingauges, 
radars, satellites) and for real-time data assimilation applications. 

3.  Illustrative Example 

 Suppose one has available radar observations at 2-km resolution and satellite observations at 16 -km resolution, 
or only a sparse network of raingauge observations but complete coverage of the area by a satellite overpass.  How is 
one to combine these observations for obtaining an optimal (in some sense) merged product at one or more desired 
scales?  This optimally merged product can be used to verify a numerical weather model or a precipitation retrieval at 
the desired scale. To demonstrate the use of the multiscale framework, a simple numerical experiment was conducted. 
  
 In all cases, a combination of observations and their uncertainties at 2 km and 16 km were provided and 
optimal estimates at 8km were computed using SRE (see Fig. 3). These estimates were then compared to the true 8 -km 
averages (known to us in this constructed example) in terms of bias, RMSE, standard deviation of the whole field, and 

mean uncertainty of the estimates. Different 
scenarios of available observations were tested.  
A bounded lognormal cas cade fitted to the 2-km 
field was used as the prescribed multiscale model.  
Table 1 summarizes the results and quantifies the 
potential of the method for multisensor validation 
studies.  As was expected,  increasing the density 
and resolution of available observations decreases 
the RMSE and bias in validation (i.e., produces 
more accurate merged fields at 8km) and increases 
the accuracy of the merged estimates (smaller 
uncertainty).  More details can be found in Tustison 
et al. (2003). 
 
Several issues must be carefully studied before 
SRE can be used with confidence for multisensor 
validation or data merging.  One of those is the 
sensitivity of SRE to multiscale model selection, 
observational error, and presence of zeros. 
 
 
 
 
 
 

Figure 2. Illustration of the scale-recursive estimation (SRE) technique applied to 
precipitation measurements. Sparsely-distributed measurements at one scale (gray 
dots), and measurements at a coarser scale (solid dots), are placed on an inverted 
quad-tree and merged via filtering and smoothing to obtain estimates at any desired 
scale together with the uncertainty of these estimates.  

Figure 3. Illustration of the proposed framework for QPF Verification. 
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Table 1.  Case studies illustrating the application of the SRE methodology for merging observations at 
different scales. The mean of the KEAX WSR-88D hourly accumulation field at 8 km (which was considered 
the “true” field in this example)  was 1.99 mm, and the standard deviation, 3.01mm.  All the values are given 
in mm.             
 

SRE estimation at 8 km 
 

Case 
 

Observations Bias RMSE σ est  
field 

Mean 
uncertainty 
of estimates  

1 10% sampling at 2 km 0.40 1.13 2.47 0.32 
2 50% sampling at 2 km 0.15 0.48 2.84 0.21 

3 10% sampling at 2 km; 
100 % at 16 km 

0.17 0.84 2.80 0.30 

4 50% sampling at 2 km; 
100 % at 16 km 

0.10 0.45 2.88 0.21 
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Introduction 
General circulation models (GCM) predict precipitation on spatial scales that are different from the scales described by 
observations. The observed precipitation from a rain gauge will tell us something about the local precipitation pattern, 
but the forecasting system will in general be unable to describe such a small scale variability. Moreover, verification 
against irregularly distributed observed data, as SYNOPs available in real time from the Global Telecommunication 
System (GTS) might be, is liable to misinterpretation due to SYNOPs under-sampling the precipitation variability. 
 
The precipitation forecast should be interpreted as an areal quantity, rather than a grid point value. Therefore 
verification that interpolates the forecast precipitation to the rain gauge location can only capture partially the model 
skill. 
  
Ideally a precipitation analysis will appeal to a user who wants to verify his/her forecasting system if the analysis 
describes spatial scales comparable to the model scales, it represents the observed areal rainfall, and it is independent 
from any model thus guaranteeing an independent dataset for verifications. The up-scaling technique (Ghelli and 
Lalaurette, 2000) represents a step in this direction. The up-scaled precipitation dataset is independent of models and 
describes spatial scales that are the spatial scales of the precipitation forecasts. Some of the spatial variability of rainfall 
is maintained in the up-scaling technique. 
 
The up-scaling technique is a simple averaging method which has shown to guarantee a fairer comparison between 
precipitation forecast and observed amounts. Cherubini et al (2002) show that the overestimation of most rainfall 
amounts is reduced when using up-scaled observations rather than point estimation of rainfall. 
 
The up-scaling technique  
The up-scaling technique is a very simple algorithm that assigns each station of the high-density dataset to a model grid -
box. Each model grid-box is built around a grid-point.  A simple average of all the stations comprised in the same grid -
box is then calculated, and the mean value is assigned to the corresponding grid-point. Mean values will be referred to 
as up-scaled observations. 
   
The up-scaling method can smooth out local  maxima of precipitation, thus reducing the small-scale variability that 
current GCM are not likely to be able to simulate correctly. High-density network data cover only land areas and cannot 
currently be used in real time. The end product of the up-scaling technique is a precipitation analysis whereby the 
observed grid-point value is indeed an areal quantity. Moreover, data from the high- density network of rain gauges 
represent an independent dataset for use in verification. Because of the high density of such data, they can be used to 
verify models at different spatial resolution, provided the up -scaling technique is tuned for the different resolutions.  
 
Verification measures 
Any forecast system should include verification to evaluate the accuracy and skill of forecasts. Quantitative and 
qualitative verification help us to understand the characteristics of the forecasting system. The measures used in the 
present paper to test the performance of the forecast are the Frequency Bias Index (FBI) and the Equitable Threat Score 
(ETS). 
 
Contingency tables (table 1) for different thresholds of 24 hour accumulated precipitation have been built. The ETS 
(Schaefer, 1990) is a modified version of the Threat Score rendered equitable by taking away the random forecast (R(a)). 
A detailed explanation of such score can be found in Wilks, 1995. The FBI is written as: 

 
The ETS is written as follows: 
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The FBI measures the event frequency and its value is 1 for a perfect forecast and it is larger (smaller) than 1 for an 
over-forecasting (under-forecasting) system. 
The ETS is 0 (no skill) for a chance or constant forecast and it is 1 for a perfect forecast. 
 

  observed yes observed no 

forecast yes a (hits) b (false alarms) 

forecast no  c (misses) d (correct no event) 

 
   Table 1: Contingency table for a generic threshold  
 
 
Results 
 
1. Precipitation forecast verification in France 
The high -resolution data for the French territory has been made available by Meteo-France and it covers the period 
January 1997 to November 2002. There are about 4000 rain gauges reporting rainfall amounts that are accumulated 
over a period of 24 hours. 
 
The FBI has been stratified by seasons thus avoiding the thinning of the sample size, which renders the statistics very 
noisy. The FBI is therefore calculated for December, January and February (D), March, April and May (M), June, July 
and August (J) and finally September, October and November (S). The FBI is then averaged over the French territory 
where the up-scaled observations are available. Fig. 1 shows timeseries of FBI for two different thresholds 1 mm/24h 
(panel a) and 5 mm/24h (panel b) and different forecast ranges. 
 
The FBI shows that the forecasting system performs better in autumn/winter months when the FBI values are closer to 1. 
This period is characterised in Europe by well-organised frontal systems as opposed to summer months when 
convection becomes the predominant mechanism. In October 1999,  the model vertical resolution was increased to 
60 levels and a change in the cloud scheme was introduced. This is reflected in the FBI trend: the model over-forecasts 
precipitation events before autumn 1999 while after the change was introduced it performs as an almost perfect system 
in autumn/winter months and it slightly under-forecasts during summers. This is evident for both thresholds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1: FBI timeseries for different forecast ranges and different  
     thresholds: 1 mm/24h (panel a) and 5 mm/24h (panel b) 

a 

b 
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2. Precipitation forecast verification for the Douro/D uero river basin 
The verification of precipitation forecasts has been extended to the catchment area of the Duoro/Duero river that runs 
from Spain into Portugal towards the Atlantic Ocean. The catchment area contains around 400 high-density network 
rain gauges and only 11 SYNOP stations available from the GTS. The area comprises 72 grid points. An assessment of 
the model performance has been possible because of the high resolution data made available to ECMWF by Spain and 
Portugal. 
  
Standard verifications looking at the degree of match between forecast and observed value, have been described in 
Ghelli (2002) for a flooding episode of the river Duoro in February-March 2001. Hereafter, objective measures are 
presented. 
 
FBI and ETS have been calculated for a 15-month period (January 2001 to March 2002) and they are shown in Fig. 2 as 
a function of the precipitation thresholds. Three different accumulation ranges have been evaluated, as the length of the 
rainy events is a significant factor in determining the response of the river basin. FBI (fig. 2 a) values are confined to 
values very close to 1 for all the accumulation ranges and thresholds. This indicates that the model only slightly 
over-estimates the frequency of the rainy events.  
     
 
 
 
 
 
 
 
 
 
 
 
 Figure 2: Frequency Bias Index (panel a) and Equitable Threat Score (panel b) 
     for  1 day (red), 3 days (blue) and 5 days (yellow) accumulated 
                            

precipitation forecasts averaged over the whole period investigated. 
 

The ETS (Fig. 2 b) shows a more skilful system for shorter accumulation times. The ETS value 
decreases as the accumulation range increases. Nevertheless, 5-day accumulation forecasts 
have still considerable value with the ETS reaching 0.6 for the 4 mm/120h threshold. 

 
Conclusion and recommendations 
In the present paper, it has been discussed the importance of  precipitation observations obtained from high density 
observing networks. These observations, up -scaled to the model resolution, allow the spatial scales of the model to be 
compared to analogous observed scales. Moreover, the end product of the up-scaling procedure is a gridded analysis 
whereby each grid-point value represents an areal quantity. 
  
It has been pointed out that SYNOPs available in real time on the GTS may suffer from under-sampling, hence they 
describe the small scale variability of rainy events partially. Verification against these irregularly distributed data is 
liable of misinterpretation. 
 
The forecast verification in France has indicated that the over-forecasting of the event frequency has been reduced since 
autumn 1999. This reduction is linked to the cloud scheme change and the increased vertical resolution implemented in 
October 1999.   
 
The paper has also shown some results from the verification of forecast precipitation for a river catchement area. These 
verifications could not have been done without the high-resolution data, as there were only 11 SYNOPs available on the 
GTS for an area of  about 350x350 Km. The results show that the forecasts slightly over-forecast the number of rainy 
events. Moreover, the forecast has considerable skill for different accumulation ranges when the observation/forecast 
pairs are pooled over a 15-month period.    
 
Obtaining precipitation data from high -density observing networks may be difficult, but where possible they should be 
used to verify models. This is our challenge for the future. 
 
Acknowledgements:  I am grateful to ECMWF Member and Co-operating States for providing high-density network 
precipitation data.  I am also grateful to Dr.Tiziana Cherubini and Mr. Tamas Hirsch for discussions and help in 
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Extended Abstract  
 
We present results of studies aimed at determination of uncertainties in rain gauge and radar rainfall estimation 
uncertainty.  We also explore the information contained in radar-rainfall data on the spatial structure of rainfall.  This is 
relevant to TRMM and other remote sensing prod ucts of rainfall as they may be used in regions of the world where no 
other information is available. 
 
We begin with rain gauge data.  First, we address the issue of random error of tipping bucket rain gauge.  To date we 
know of two such rigorous studies on this subject.  Habib et al. (2001) performed a data based simulation and estimated 
the error distributions as function of rainfall magnitude, time integration scale, and bucket size.  Recently, Ciach (2003) 
conducted an experimental study and synthesized the results for two different methods of tip data processing.  His 
results are in good agreement with the earlier study by Habib et al. (2001).  A very interesting result is the scaling 
behavior of the errors.  These results are also confirmed by analysis from the double gauge data at the Iowa City 
Municipal Airport.  The main conclusion from these studies is that tipping bucket rain gauges, when well maintained 
and deployed as a pair, provide accurate observation of rainfall at scales from 10 minutes up.  The errors decrease with 
increasing rain rate. 
 
The second issue is that of estimating rainfall over small areas from dense cluster of rain gauges.  Let us pose a question 
relevant to direct validation (Krajewski and Smith 2002): “How many gauges are requ ired in a 2×2 km2 area (equivalent 
to a typical radar-rainfall product) to obtain areal estimate with high accuracy (~5%)?”  Answering this question 
requires knowledge of the spatial correlation function of the rainfall regime.  Habib and Krajewski (2002) estimated 
such a function for Florida summer rainfall.  Krajewski et al (2003) estimated it for five different locations around the 
world.  Based on these studies we consider two cases: exponential correlation with the correlation distance of 5 km and 
15 km.  In the first case we need about 20 gauges uniformly covering the pixel to reach the 5% error level.  In the 
second case only 5-8 gauges will achieve the same objective. 
 
The third issue addresses the question of the information contained in the radar rainfall data of the statistical structure of 
rainfall.  We considered two functions: spatial covariance function and scale-dependent variance reduction function.  
Our results show that in both there is significant discrepancy between accurate estimation based on very dense network 
of gauges and that based on radar estimates.  We attribute this difference to the random error present in the radar data.  
We confirm this by performing several data based simulation experiments. 
 
Our final result is on the sampling effect of TRMM-like sampling of rainfall on inferring multiscale description of 
rainfall.  Using full two months of radar rainfall data (every 6 minutes) and TRMM-like subsamples of the same data set, 
we estimated the normalized moment scaling function.  The reduced sample leads to a significant bias in the estimated 
function. 
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ABSTRACT 
 
 The hydro-climatology of the Arctic terrestrial drainage plays an important role in the climate system.  The 
primary freshwater source to the Arctic Ocean is river discharge.  River discharge influences ocean salinity and sea ice 
conditions which can impact on freshwater fluxes through the Fram Strait and Greenland Sea into the North Atlantic.  
The degree of surface freshening in the North Atlantic is thought to influence the global thermohaline circulation.  
Changes in the terrestrial hydrologic cycle  may alter soil moisture, impacting on plant communities and their grazers.  
Arctic soils serve as potentially significant sources of carbon dioxide and methane.  Fluxes appear to respond 
sensitively to altered soil moisture and temperature. There is hence a clear need to monitor the Arctic system and better 
understand interactions between system components.  The terrestrial hydrologic budget is a high priority.  
 
 A project known as Arctic-RIMS (Rapid Integrated Monitoring System) is bringing  data sets and techniques 
together to provide readily accessible hydrologic products.   Arctic-RIMS is a collaborative effort between University of 
Colorado, University of New Hampshire, the Ohio State University and the Jet Propulsion Laboratory.  The project uses 
satellite data, the NCEP reanalysis, in -situ records and a permafrost/water balance model to compile fields of 
precipitation (P), precipitation less evapotranspiration (P-ET), ET, temperature, soil moisture, soil freeze/t haw state, 
active layer thickness, snow extent and its water equivalent, soil water storage and other variables.  Historical time 
series are provided along with updates  at a 1-2 month time lag.  Gridded products are assembled over the complete 
Arctic terrestrial drainage, defined as areas emptying  into the Arctic Ocean as well as into Hudson Bay, James Bay, 
Hudson Strait, the Bering Strait and northern Bering Sea. Here we describe a core element of Arctic -RIMS - the 
provision of historic time series and updates of gridded precipitation.  Details are provided in the upcoming paper of 
Serreze et al. [2003].   
 
 Provision of gridded historic time series has in itself  proven to be a daunting and at times frustrating task.  The 
required station density to assemble quality gridded time series at a spatial scale useful for input to hydrologic models 
exceeds what is available over most of the Arctic drainage.  The problem is compounded by large errors in the 
measurement of solid precipitation and  degradation of the station network since about 1990, the latter due to budget 
cuts in both the Former Soviet Union (FSU) and Canada.   For example, the station coverage for the FSU in 1996 is 
about half of that available in the mid 1980s.   Canada is also seeing a trend toward the replacement of manual 
observations by automated systems, providing data of suspect quality.  
 
 To assess the impacts of station density for generating historical time series,  Monte-Carlo experiments were 
performed for the few well-instrumented areas of the Arctic drainage in Canada.  Briefly, monthly grid box time series 
were compiled using all the stations in 175 km grid boxes.  These were taken to be the "true" time series.   Time series 
were then compiled by randomly removing stations from the boxes, and were compared to the true time series.   It is 
concluded that for 175 km grid cells,  the Arctic station network over the period 1960-1989 is generally sufficient to 
estimate the mean and standard deviation of precipitation at this scale (hence  the statistical distributions).  However, as 
for most regions of the Arctic, one must obtain grid box values by interpolating from stations well outside of the grid 
box bounds, the true grid box time series are often poorly represented.  The Monte Carlo experiments indicate that to 
accurately capture the true monthly time series (e.g., to get a squared correlation exceeding 0.70), one must have at least  
four stations per 175 km cell and more in topographically complex regions.  However, only 38% of cells across the 
Arctic terrestrial drainage contain even a single station.      
 
 We next consider four options for monitoring precipitation: (1) make do with gridding available updates of 
station data; (2) make direct use of gridded precipitation forecasts from the NCEP reanalysis; (3) use the gridded 
observed precipitation time series and NCEP output for 1960-1989 (forecasted precipitation and other variables such as 
vertical motion) to develop linear regression models which can be applied to NCEP updates (a form of  statistical 
downscaling); 4) use non-parametric methods to constrain NCEP output by the statistical distributions of the gridded 
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observations over the 1960-1989 period.  A common thread between options 2-4 is that output could be subsequently 
adjusted via assimilation of any available station data updates.  
     
 The problem with Option 1 is that station coverage since 1990 is much more sparse than for earlier decades 
and is insufficient by itself.  Regarding Option 2,  NCEP forecasts of precipitation in the Arctic contain large biases 
(especially in summer) and cannot be used "as is" [Serreze and Hurst 2000].   Option 3 (e.g., multiple linear regression) 
is clearly problematic in  that it requires faith in the observed gridded precipitation time series.  As concluded from the 
Monte-Carlo simulations,  the grid box time series are often of poor quality, meaning that one will be regressing against 
noise.    The time series of individual stations  represent truth (with due consideration of gauge undercat ch and other 
biases).   However, regression against station time series runs into problems of scale (relating point observations to 
relatively coarse scale NCEP output).   Gridding  the resulting station reconstructions also runs into the same problems 
of station density that were just discussed.  
  
 Option 4 emerges as the most viable.   It recognizes that: 1) biases in NCEP precipitation forecasts are at least 
in part systematic; 2) systematic biases can be accounted for through re -scaling procedures (a non-parametric 
probability transform, see Panofsky and Brier [1963]) that require only the statistical distributions of observed 
precipitation rather than accurate representation of the gridded time series themselves; 3) re-scaling procedures can be 
applied to reconstruct precipitation from other variables, such as aerological estimates of P-ET (from the vapor flux 
convergence and the tendency in precipitable water), which can replace the re-scaled NCEP precipitation forecasts if 
they are shown to provide better skill.   The utility of these P-ET fields for assessing the Arctic moisture budget has 
been demonstrated in several recent studies [e.g.,  Rogers et al., 2001]. 
  
 Cross -validated correlation analyses indicate that re-scaled monthly NCEP forecasts (re-projected to a 175 km 
grid) have considerable skill in some parts of the Arctic drainage (squared correlations exceeding 0.50), but perform 
poorly over large regions.  A fundamental problem, however, is that in data sparse regions,  the observed gridded time 
series are themselves of poor quality. Hence, the term "validation" is perhaps inappropriate.  In data-sparse areas, it may 
well be that the NCEP forecasts are performing better than is indicated from the correlations. 
 
 Treating climatology as a first guess with replacement by re-scaled NCEP values in areas where skill can be 
demonstrated yields a marginally  useful monitoring product on the scale of large watersheds such as the Ob, Yenisey 
and Lena.   Further improvements are realized by assimilating data from a limited array of station updates (taken as 
representative of the network which will be available in the next decade) via a simple replacement strategy.  In turn, the 
product can be further improved by including aerological estimates of P-ET within the initial re-scaling procedure.  In 
some areas, such at the Lena basin in summer, the re-scaling technique (even without data assimilation) works 
extremely well.    
 
 We also examined the alternative approach of reconstructing precipitation via multiple linear regression 
(Option 3), using as predictors the NCEP precipitation forecasts along with other reanalysis variables such as P-ET 
computed from wind and humidity profiles,  monthly sums of upward vertical velocity (omega) at 500 hPa,   zonal and 
meridional moisture fluxes, sea level pressure and a measure of lower-tropospheric stability.  The apparent skill is 
comparable to that based on the  re-scaling approach using NCEP  precipitation and P-ET.  There are issues of co -
linearity between predictors.  There are methods to resolve these issues, but as just discussed,  the re-scaling approach is 
on a better statistical footing in that unlike regression,  it does not assume that the observed time series are themselves 
accurate.   Only the statistical di stributions need be known.  We have also used the re-scaling approaches to reconstruct 
precipitation at the station locations, with subsequent interpolation of the reconstructed station values to the 175 km  
grid cell array.  In general, the results are worse than those based on first interpolating the station data to the grid cell 
array.  
 
 An obvious need for doing a better job is to have better observations.  However, the station data base in the 
Arctic has always been sparse, and as mentioned, has seriously degraded over the past decade.  We need to look into 
satellite-based precipitation retrievals.   The brightest avenue, however,  is having access to output from an improved 
atmospheric model.    We have had the opportunity to examine several years of precipitation forecasts from ERA-40.  
While ERA-40 appears to perform little better than ERA-15, performance is much better relative to NCEP.  The 
monitoring approach will hence transition to the use of ERA-40 as soon as significant portions of the data stream 
become available to us.  Note that precipitation output from the NCEP -DOE AMIP-2 reanalysis is no better than that 
from the primary NCEP data stream.  A dedicated Arctic System Reanalysis (ASR) has been proposed under the 
National Science Foundation (NSF) Study for Environmental Arctic Change program [SEARCH SSC, 2001].  The 
proposed ASR will draw on lessons learned from ERA-40 and the NCEP North American Regional Reanalysis (NARR).    
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Introduction 
 
The Coordination Group for Meteorological Satellites (CGMS) during its XXVIII meeting noted that WMO had 
analyzed the benefits from and agreed upon the need to foster further development of focused science 
groups. The success of both the International TOVS Working Group (ITWG) and the International Wind 
Workshop (IWW) in focusing the scientific community on a specific application area’s issues and problems, 
strongly suggested similar benefits could be gained by development of science teams and workshops that 
could deal with application areas of satellite meteorology such as quantitative precipitation estimates, NWP 
and ocean and land surface properties. The current existence of many scientific groups operating in these 
areas could facilitate the task. For example, in the area of quantitative precipitation estimation, groups of 
scientists are currently involved in the Global Precipitation Climatology Project (GPCP) of the World Climate 
Research Programme (WCRP) and have already exchanged information on data requirements, algorithm 
development, data set production, validation and data distribution. 
 
CGMS-XXVIII also noted that the fifty-second session of the WMO Executi ve Council had recommended 
involving relevant science groups in a systematic manner and the positive indication from the GPCP for 
WCRP’s Global Energy and Water Cycle Experiment (GEWEX) to serve as a nucleus for such a working 
group. Thus, WMO strongly encouraged the formation of an International Precipitation Working Group 
(IPWG) with active participation by WMO and GPCP within the framework of CGMS. As a result, CGMS-
XXVIII initiated the establishment of a Working Group on Precipitation, with co-sponsorship by WMO and 
CGMS. 
 
The first session of the IPWG was held at the Colorado State University, Fort Collins, Colorado, USA, 20-22 
June 2001. The current status of precipitation estimation from satellite -based observing systems and the 
plans and capabilities  of proposed future satellite systems were reviewed. Draft terms of reference for the 
IPWG were established, which were approved at CGMS-XXIX in Capri, 23-26 October 2001. 
 
Scope of IPWG 
 
The IPWG is established to foster the: 

q Development of better measurements, and improvement of their utilization; 
q Improvement of scientific understanding; 
q Development of international partnerships.Specific objectives are as follows: 
1) to promote standard operational procedures and common software for deriving precipitation 

measurements from satellites; 
2) to establish standards for validation and independent verification of precipitation measurements 

derived from satellite data; including: 
Ø reference standards for the validation of precipitation for weather, hydrometeorological  and 

climate applications; 
Ø standard analysis techniques that quantify the uncertainty of ground-based measurements 

over relevant time and space scales needed by satellite products; 
3) to devise and implement regular procedures for the exchange of data on inter-comparisons of 

operational precipitation measurements from satellites; 
4) to stimulate increased international scientific research and development in this field and to establish 

routine means of exchanging scientific results and verification results; to make recommendations to 
national and international agencies regarding the utilization of current and  future satellite 
instruments on both polar and geostationary platforms; and  
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5) to encourage regular education and training activities with the goal of improving global utilization of 
remote sensing data for precipitation measurements. 

 
1st  IPWG Science Workshop 
 
The first science workshop of the CGMS and WMO International Precipitation Working Group was held at the 
EUMETSAT Nowcasting Satellite Applications Facility (SAF) in Madrid, Spain from 23-27 September 2002. The 
workshop promoted the exchange of scientific and operational information between the producers of 
precipitation measurements, the research community, and the user community, and developed pathways 
forward for a variety of activities within the IPWG. The workshop was hosted by the Instituto Nacional de 
Meteorologia (INM) and the SAF. 
 
The first three days of the workshop consisted of keynote and scientific presentations in the following topical 
areas: 

• The IPWG and Related International Projects 
• Operational Estimation of Rainfall 
• Missions and Instruments 
• Research Activities  
• Validation 

 
An important goal of the workshop was to compile an inventory of  routinely produced precipitation estimates; 
either operational or experimental/research. The two most important criteria for the inventory are: 1) the 
retrieval algorithm be published so that others can study what was done, and 2) the algorithm be in current 
use and producing precipitation estimates on a routine or regular schedule. 
 
The following two days activities were focused in three working groups: Operational Applications, Research 
Activities, and Validation Activities. Each working group discussed activity within their topical area and developed  
plans for future activities with short term, intermediate and long term goals. 
 
 

 
Fig. 1. The IPWG web site at the Institute of Atmospheric Sciences and Climate of the Italian National Research 
 
Fig. 1. The IPWG web site at the Institute of Atmospheric Sciences and Climate of the Italian National Research 
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Operational Applications: Recommendations  
 
Form a subgroup for the development of instantaneous precipitation estimation export algorithms for users of 
geostationary and low Earth-orbiting satellite data. Collect current, operationally-oriented, instantaneous 
satellite -based precipitation algorithms to be made available through the IPWG website. Provide information 
on current and research-oriented climatological precipitati on techniques. IPWG group to survey the 
space/time needs, accuracies needed, data latency time, and temporal coverage.Establish the IPWG web 
site. The web site has been established at http://www.isac.cnr.it/~ipwg/ (see Fig. 1). 
 
Coordinate efforts and activities contemplating the use of satellite precipitation data for "non-traditional" 
applications. Broaden the application of satellite precipitation products by co-operation with communities 
other than meteorology and hydrology, e.g. snow models, irrigation models, pest and disease models, mud 
slide and avalanche models, dispersion models, surface pollution models and others. 
 
Make case study satellite datasets available through the IPWG website, for further algorithm research. 
Encourage continued development, refinement, and validation of the various research -status satellite sensor 
precipitation estimation techniques . 

• MW satellite precipitation techniques;Combined or “blended” satellite precipitation techniques 
(IR+MW);Satellite + NWP precipitation techniques;  

• Improved validation techniques to properly analyze the error characteristics of satellite-derived 
precipitation estimates at different space and time scales;Assimilation into NWP models at short time 
scales (instantaneous to 6-hourly) and relatively fine spatial scales (0.25 -degree or less).Coordinate 

satellite -based precipitation estimation research with the needs and requirements for climatological 
applications. While climate models typically analyze precipitation on time scales of one month and space 
scales of 2.5 degrees, there is an increasing need for daily-scale precipitation estimates and space scales 
approaching one-degree.  These data can be produced with a latency time, but need to have data records 
extending back over a sufficient number of years in order to be useful for identifying long time scale 
variabilities.  
 
Research Activities: Recommendations 
 
Provide a generally accessible platform on data and algorithms for the research com munity. Define elements 
of algorithm transition required for general applications (QPE, bias/error estimate, limits of applicability, 
documentation, comprehensive bibliography, compliance with user requirements as defined by WMO, 
EUMETSAT, NASA-DAO, ESA, others - compile user requirements w.r.t. to precipitation on the IPWG web 
site). Set up an inventory of field campaign data with co-located satellite and ground data relevant for 
validation purposes, i.e. providing the necessary data sets for validation exercises. Enable co-operation and 
training through software libraries. 
Develop new strategies on flexible and global structures for physical algorithm development, validation, and 
data fusion . Establishing a framework for  

• Physical algorithm development (global and regional). 
• Developing a testbed  for algorithm validation (comparison data sets etc.). 
• Product merging and blending.   

The principal problem of under -constrained precipitation retrievals requires different types of 
analysis/retrieval approaches. 
Methodology and information:more complex analysis methodologies;multiple sensors, multiple satellites, new 

instrument developments (e.g. geo-MW, lightning sensors, dual -frequency radars);climatological 
information;simplified dynamical physical models.The usefulness and complexity of the needed 

methodology and information depends on the application. Only by stronger constraints on algorithms special 
retrieval problems ca be solved such as:orographic precipitation, light precipitation, frozen precipi tation, 
resolution enhancement [spatial (vertical/horizontal) and temporal].Indications for future sensors should 
emerge based on the identified scientific outstanding areas. 
In view of future sensor development a long-term strategy for frequency protection has to be developed and 
integrated in the current ITWG activities. 
 
Validation Activities: Recommendations  
 
Provide baseline validation standards for satellite precipitation algorithm(s) in terms of the needs of users in 
NWP data assimilation, nowcasting, hydrology, climate, and algorithm development communities. 
Define validation metrics for NWP. 
Define validation metrics for nowcasting. 
Define validation metrics for hydrology. 
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Define validation metrics for climate.Ensure that members of the NWP data assimilation, nowcasting, 
hydrology, climate communities are represented at future IPWG meetings.Monitor performance of 
operational precipitation algorithms on a large scale on a daily basis, preferably in connection with NWP 
forecast validation .Support alternative approaches to error estimation such as physical error modeling and 
cloud/system classification to obtain global error estimates .Create an inventory of existing high quality 
reference data. 
Encourage sharing of data from Intensive Observation Periods in large-scale experiments with the IPWG 
community, to enable improved validation of satellite rainfall estimates .  
Perform and develop new methods for the error characterization of reference datasets.Encourage the use of 
dual -gauge system s and optimal network design in operational rain gauge networks, to improve the reliability 
and quality of rainfall observations .Investigate the quality and availability of surface reference networks for 
the validation of hard-to-measure (orographic, lig ht, solid) precipitation .Develop an assessment software 
package, incorporating both basic and advanced techniques, to facilitate validation of satellite rainfall 
estimates by algorithm developers and users. 
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Appendix I. WORKSHOP AGENDA  
 
 
March 11, 2003 Tuesday 
 
Welcome 

  

 9:15-9:35 Tony Hollingsworth,  Arnie Gruber  
Introduction   
 9:35-10:00 Masao Kanamitsu (SIO/UCSD)  
Session I-a.  Precipitation analysis procedures (GPCP, CMAP) 
Chair person:  Arnie Gruber   
1 10:00 -10:40 George Huffman and Bob Adler (GSFC/NASA) 

(1) The Current Approach to GPCP Monthly and Daily Precipitation  Estimates.  
(2) The Multi-satellite Precipitation Analysis (MPA) in Real and Post-Real Time. 

 
Break (10:40-11:00) 
 

 

2 11:00-11:25 Pingping Xie, Yelena Yarosh, John Janowiak (NCEP/NOAA), and Phillip A. Arkin 
(ESSIC/UMD)  
Techniques used to create CMAP and their potential improvements 

Session I-b.  Precipitation analysis procedures (NWP data assimilation) 
Chair person: Peter Bauer   
3 11:25-11:50 Philippe Lopez (ECMWF) 

Precipitation assimilation at ECMWF 
4 11:50 -12:15 Arthur Hou (DAO/NASA/GSFC) 

Precipitation assimilation at NASA Goddard 
5 12:15 -12:40 Bruce MacPherson (Met Office) 

Precipitation assimilation at the Met Office (UK) and COST -717 collaboration in Europe 
 
Lunch (12:40-1:50) 
 
6 1:50-2:15 Peter Bauer (ECMWF) 

Estimation of rainfall and its error characteristics from satellite observations 
7 2:15-2:40 Ko Koizumi (JMA) 

Precipitation assimilation to JMA mesoscale model using a 4D-Var method 
8 2:40-3:05 Per Kallberg (ECMWF) 

The p recipitation in ERA-40 
Session I-c.  Precipitation analysis procedures (Other methods)  
Chair person:  Yukari Takayabu  
9 3:05-3:30 Murray Salby (U. Colorado) 

Gridding of Global precipitation from satellite measurements 
 
Break  (3:30-4:05) 
 
10 4:05-4:30 Evgeny Yarosh, Wayne Higgins and Wei Shi (NCEP/NOAA) 

High-resolution daily precipitation analysis over U.S. at CPC/NCEP 
11 4:30-4:55 Joe Turk (NRL) 

Blending precipitation data sets from multiple sources at short time scales 
12 4:55-5:20 E. Ebert (BMO) 

The Australian Operational Daily Rain Gauge Analysis 
13 5:20-5:45 Jurgen Grieser (DWD) 

Towards an adaptive method for spatial interpolation of global rain gauge data 
  

5:45- Cocktails 
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March 12, 2003 Wednesday 

 
14 

 
9:15-9:40 

 
Xiaogang Gao, Soroosh Sorooshian, and Kuolin Hsu 
Strategy of Error Analysis and Reduction in the PERSIANN System 

Session II - Observation characteristics (rain gauge and satellite) 
Chair person:  Beth Ebert  
15 9:40-10:05 Udo Schneider (GPCC/DWD) 

Operational processing, quality control and analysis of precipitation data at GPCC 
16 10:05 -10:30 Yukari Takayabu (CCSR/Univ. Tokyo) -  Characteristics of precipitation as observed by 

TRMM PR 
Session III.  Validation and Collaboration 
Chair person:  Pingping Xie 
 
Break (10:30-10:50) 

 
 

17 

 
 

10:50 -11:15 

 
 
Efi Foufoula (Univ. Minn.) - Multisensor -multiscale precipitation datasets and model 
Verification 

18 11:15 -11:40 A. Ghelli (ECMWF) - The relevance of gridded rainfall observations to verify ECMWF 
precipitation forecasts 

 
19 11:40 -12:05 Krajewski (U. Iowa) - Error characteristics of rain gauge and radar estimates and validation 

issues  
20 12:05 -12:30 Mark Serreze (NSIDC) - Monitoring Precipitation over the Arctic drainage: Data requirements, 

shortcomings and applications of atmospheric reanalysis  
 
Lunch (12:30-1:45) 
 
21 1:45-2:10 V. Levizzani (CNR, Italy) and Arnie Gruber (NESDIS/NOAA) -  The international 

Precipitation working Group:  Opportunities and perspectives 
Discussions  

 2:15 -5:30 Guidance to Working Group and breakout 
§ Analysis procedure 
§ Data assimilation 
§ Observation error characteristics 

  
5:30- Informal buffet in the ECMWF Restaurant 

 
 
 
March 13, 2003 Thursday 
  

 9:15 – 10:45 
 
Working Group discussions continue 

 10:45 – 11:00 Break  
 11:00 – 1:00 Plenary Session – Report of Working Group and Recommendations 
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Bauer, Peter ECMWF p.bauer@ecmwf.int 

Bruno, Rudolf DWD/GPCC bruno.rudolf@dwd.de 
Buizza, R. ECMWF roberto.buizza@ecmwf.int   

Ebert, Beth BMRC eee.bom.gov.au 
Foufoula-Georgiou, Efi  Univ Minn efi@umn.edu 

Gao, Xiaogang Univ. AZ gao@hwr.arizona.edu 
Grieser, Jürgen DWD juergen.grieser@dwd.de 
Gruber, Arnold NOAA/NESDIS arnold.gruber@noaa.gov 

Hollingsworth, Anthony ECMWF Anthony.Hollingsworth@ecmwf.int 
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Kanamitsu, Masao SIO/UCSD mkanamitsu@ucsd.edu 
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Krajewski, Witold University Iowa wfkrajewski@icaen.uiowa.edu 
Ghelli, Anna ECMWF A.Ghelli@ecmwf.int 

Levizanni, Vincenzo CNR, BOLOGNA Italy V.Levizzani@isac.cnr.it 
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BMRC - Bureau Meteorological Research Center 
CCSR -  Center for Climate System Research 
DWD - Deutcher Wetterdienst 
GPCC - Global precipitation Climatology Center 
ECMWF - European Center for Medium Range Weather Forecasting 
JMA - Japan Meteorological Agency 
NASA/GSFC - National Aeronautics and Space Administration/Goddard Institute for Space Sciences  
NOAA/NESDIS - National Oceanic and Atmospheric Administration/National Environmental satellite Data and 
Information Service 
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NRL - Naval Research Laboratory 
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SIO/UCSD - Scripps Institute of Oceanography/University California San Diego 
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Appendix III–1.  Recommendations by each Working Group 
 
Analysis Working Group 
 
Efi Foufoula (13th), Xiaogang Gao, Jurgen Grieser, George Huffman (Chair), Witold Krajewski (13th), Murray Salby, 
Pingping Xie, Evgeny Yarosh 
 
Summary of Recommendations 
(In some cases there is additional information in the corresponding item under “Detailed Summary of Discussion”, 
below) 
 
Data Issues  
2. Difference due to instruments  

• A study is needed defining the modern distribution of undercatch by gauges.  Dr. Groisman of NCDC is 
apparently working on this and should be contacted.  Changes in gauge deployment over the GPCP data 
record must be included in this study. 

3. Observation error characteristics 
• Each input precipitation data set must be assigned comparable error estimates 

5. Future rain observing systems 
• For the present, frozen/snowy areas lack useful microwave estimates. 

6. What satellite issues have been glossed over that must be confronted at fine scales?   
• Parallax effects (and what’s hidden behind a tall cloud), pixel overscans and gaps, surface type attribution, 

fall speeds, instantaneous 3-D structure, and 3-D radiative transfer must be confronted by the algorithm 
producers for best estimates at fine scales. 

7. How close are we to daily gauge estimates, if only by region, and how far back in time can they be constructed? 
• CPC is doing daily global GTS precipitation analyses (from 1977 to the present in real time).  There is not a 

uniform definition of the day boundary, but broad regions tend to have the same observing practice.  The data 
set includes number of samples. 

• Daily raingauge analyses are being done in several regions, but this requires a large body of data that GPCC 
does not now access.  GPCP should examine the institutional issue of how to access and manage daily gauge 
data and analyses. 

• Data producers must be informed that raingauge analyses always need the number -of-gauges field 
 
Analysis Issues 
1a. What is the best approach in the recent/future era of plentiful satellite data?  

• We are not yet in a position to identify a “best” approach.  We need to identify the critical items for 
intercomparison.  NB:  The best approach might be obscured by simple mis -steps in implementation.   

1b. What is the best approach in the earlier era of limited satellite data? 
• The 1979-1985 data record might be significantly improved by upgrading several early data sets: OLR, OPI, 

TOVS, MSU, and/or geo-IR.  
• There is an issue of attracting the attention of funders; we need to make a case. 

2. Are different analysis procedures needed for different spatial and temporal scales? 
• Collaboration is needed among the gauge analysis groups to examine trade-offs for doing daily/hourly 

analysis. 
3. What analysis procedures should be used in complex terrain? 

• Altitude and slope effects are clearly important in gauge analysis, but PRISM-like schemes are designed for 
monthly climatologies, not daily analysis based on sparse data. 

• Models and independent observations might provide useful approaches to the complex terrain issue, but 
research is needed to demonstrate reliable performance. 

6a. Since objectives analysis techniques best deal with unbiased input data, how can biases in the various input data be 
removed? 
• Need to continue developing high-quality, unbiased reference sites across the range of climate regimes.  

We must continue to develop additional sites over ocean. 
• We need research on the dominant bias fluctuations.  As a first step, research should be done on creating a “bias 

index” to give users a first estimate of bias behavior. 
6b. Is bias removal best done during the retrieval process or during the analysis, or by a combination of both? 

• Estimation groups should share reference data sets to ensure the best calibration/validation for each estimate. 
( This does answer the question- should we delete? 

7. What is the right calibration interval calibrating IR precipitation algorithms by microwave estimates? 
• For microwave-IR, the stability and sensitivity of current schemes needs to be demonstrated at time intervals 

of monthly, pentad, daily or even microwave overpass by overpass.  All these  intervals which are used in 
IR-MW calibrations . sensitivity to time of day should be tested 
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8. What should be the role of model-based estimates in developing an objective analysis of precipitation? 
• A study should be carried out to determine whether model data be used to assist in the altitude and 

slope-aspect enhancement of precipitation. In order to address some opposition to mixing model outputs with 
observations  The relative performance of the model compared to co-located observations should be 
researched as a basis for action.  Users will continue to require a no-model analysis – the issue is whether a 
parallel observation+model analysis is sufficiently interesting to institute.  

9. How best to move away from the current assumption that at least some of the input data sets to the analysis are 
un-biased, e.g. gauge data? 
• The goal is that all input data to a final precipitation estimate be biased corrected combination algorithm. 

10. How to establish physical consistency with other variables? 
• Studies comparing data should be done, but after the first round we expect to learn about the errors in all the 

data sets, not just precipitation. 
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Appendix III-2.  Recommendations by each Working Group 
 

Data Assimilation Working Group 

Philippe Lopez, Peter Bauer, Frederic Chevallier, Sandra Dance, Arthur Hou, Per Kallberg, Masao Kanamitsu, 
Ko Koizumi, Bruce MacPherson, Emmanuel Moreau 

I. Precipitation data ?  NWP 

The group expressed a general need for the validation of model precipitation by GPCP-type data products.  

It was pointed out that at the current stage of the developments in various NWP-centers, the benefit of precipitation data 
assimilation is evident in both analyses and forecasts on the global as well as regional scale. While the assimilated 
information may not be retained over a long forecast period, there is an improvement of the atmospheric and surface 
analysis. 

Both observations and validation (methodology) may provide information on the spatial characteristics of precipitation 
below the current NWP model grid-scale for the improvement of physical parameterizations and data assimilation due 
to the non-linear relationship between area-averaged products and area-averaged observations. 

Almost the entire discussion focused on the problem of error definition / characterization: 

1. In data assimilation, individual products from individual observational means are usually preferred because the 
definition of observation errors is facilitated. The exception would occur if an integrated/merged product could 
overcome the errors of the individual products in a better way. 

2. For individual products, the error definition should follow the forward principle that is the estimation of error 
contributions from all contributing factors between the original observation and the final retrieval product. 
These contributions mainly originate from: 
- the instruments, 
- the involved physical models, 
- the assumptions on spatial representativeness, 
- the assumptions on temporal representativeness.  

3. The error estimation has to include the spatio -temporal error correlation (i.e. error covariance and its 
dependence on state) as well as the error of rain detection. 

4. In principle, data assimilation requires the elimination of systematic differences between observations and 
model background (on average), therefore bot h observation and model field biases are to be estimated. If the 
absolute bias cannot be determined, an uncertainty estimate should be provided along with the bias.  

5. It was stressed that those parameters that determine both bias and error should be identified to allow a 
bias/error-prediction towards ‘Gaussian’ error statistics.  

6. With respect to individual observations:  
Radar: The development/support of international radar networks is encouraged ensuring that the generation of 
a combined product is carried out at a central location to generate the most homogeneous/standardized product. 
Gauges: The role of gauges was identified as a calibrator for radar estimates rather than in data assimilation. In 
the future and for local applications, the assimilation of very dense gauge network observations in combined 
atmosphere -runoff models seems the represent the most likely development towards assimilation.   
Satellites : Apart from the comparison of rainfall products, satellite data provides large information content on 
precipitation-related physics and dynamics. Therefore, the indirect validation of NWP analyses with 
multi-spectral observations of radiation, humidity, clouds, precipitation, and soil moisture - in particular in 
radiance space - is recommended to further improve the moist model physics. 

II. NWP ?  Precipitation data 

In addition to observation-only analyses that are required for model validation, data assimilation has the potential of 
providing a dynamically/physically consistent description of the hydrological cycle. This forms the basis for 
understanding the coupling of precipitation with the hydrological/energy cycle that cannot be obtained from QPE alone. 

Given the accuracy of observation-only rain estimates the question arose whether the global user comm unity needs the 
inclusion of NWP analyses of rainfall. Several areas were identified where the NWP analyses may complement 
stand-alone observational estimates:  

• Higher latitudes and polar regions, 

• Orographic precipitation, 

• Precipitation over snow-covered surfaces, 
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• Snowfall. 

In terms of methodology, physical algorithms applied to satellite data will more and more involve simplified dynamical 
cloud models (single-column) which need first-guess information on the atmospheric state and possibly variational 
retrieval methods (GPM era). 

In principle, a global NWP model / data assimilation model offers many advantages over observation -only products; 
however, due to the restriction to nearly-linear physics in the vicinity of the model’s first guess applied in current NWP 
systems, the quality of the first guess and the validity of the linearity assumption may cause problems. In certain cases, 
a well trained and non-linear algorithm may outperform the NWP analysis. 

Recommendations: 

Both streams observation-only and NWP-type analyses of precipitation are required. 

Active collaboration between modeling/observation/validation groups is needed for a complete description of the 
analysis errors: biases (their uncertainties), error covariances, their state dependence, and methodologies for the 
description of their dependence on scales. 

Observations/products are required on smaller scales (space/time) because data assimilation will increasingly employ 
time-series of data and focus on more regional applications. 

 



 

 111  

Appendix III-3.  Recommendations by each Working Group 
 
Observations, Characteristics, Errors, and Validation Working Group   
 
J. Turk, E. Foufoula-Georgiou, W. Krajewski, M. Serreze, A. Ghelli, E. Ebert, Y. Takayabu, A. Gruber, M. Salby, 
U. Schneider 
 
1. Specific Recommendations on Additional/Improved Observations: 
 
• Use data from coastal radars (e. g., Key West, Florida) to validate satellite over-water rainfall estimates and 

provide additional information on high resolution space-time characteristics. Use TRMM PR data as a “reference” 
for GPCP rainfall estimates over the ocean, then extend back in time (an engineering approach, but might improve 
the accuracy of the pre-TRMM product). 

 
• Assess existing high latitude precipitation records not in current digital archives, and from research projects, in 

order to extend historical time series (e. g., Russian datasets, Greenland AWSs, SHEBA).  Compare and explore 
new high-latitude bias adjustments being used in GPCP and in development at GPCC with those being 
performed in other groups.  

 
• Future: New EOS sensors  (e.g., AMSR) may have better sensitivity to solid precipitation for high latitude 

applications.  
 
2. Specific Recommendations on Precipitation Characteristics: 
 
• Consider classifying the meteorological conditions , based on something that is observable from satellite, such that 

the multi-scale rain structure (and error characteristics) can be deduced as a function of observed “storm type”. 
 
• Grid cell  spatial and temporal variability of intensity could be computed from the original 3-hourly IR data that 

was used to build the GPCP product, along with other sources such as TRMM and GPM.  This would enable GPCP 
monthly statistics to describe the diurnal cycle and characterize the rain type on a global scale.  

 
• As GPCP doesn’t yet have any orographic correction, consider going to the NCEP or ERA reanalyses to get 

low-level wind information to help make this adjustment. 
 
3. Specific Recommendations on Validation: 
 
• Invite participation among satellite estimation providers in regional validation activities  over Australia and other 

domains 
 
• Better define error characteristics of satellite precipitation  retrievals over high latitudes, in light of degradation of 

gauge database since ~1990.  
 
• Future: GPM physical validation efforts be coordinated with GPCP validation efforts, and vice-versa. For example, 

GPCP should make use of special observation sites  (eg, future GPM supersites) in validating and classifying 
GPCP products by storm type. 

 
4. Specific Recommendations on Error Analysis: 
 
• Provide some training or guidance  on “how to use error estimates”, to encourage users of GPCP products to also 

use the accompanying error estimates. 
 
• Strengthen research in estimating the errors associated with radar rainfall  estimates, to be better able to use these 

radar rainfall estimates to validate high resolution satellite rainfall estimates. For example, clusters of rain gauges 
could be used to accurately measure the spatial correlation of rainfall at fine time and space scales. 

 
• Develop covariance models for the individual components of the GPCP product (gauges, microwave estimates, 

IR estimates) to enable data assimilation techniques to be used to optimally combine these components. 


