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North Atlantic tropical cyclone (TC) activity has been observed to vary over a wide range of timescales, from
sub-seasonal to decadal (and possibly longer), and multiple attempts have been made to relate these
variations to a large array of climate variables. The lower frequency variations are generally considered to
be related to the slowly varying thermodynamic conditions, driven in large part by changes in local sea
surface temperatures (SSTs), whereas higher frequencies tend to be driven by teleconnections from factors
external to the tropical Atlantic. For instance, North Atlantic TC activity is modulated at the interannual time
scale by El Nifio Southern Oscillation (ENSO): El Nifio (La Nifa) years are usually associated with lower
(higher) TC activity in the North Atlantic. At slightly longer time scales, the North Atlantic TC activity is
strongly tied to the Atlantic Multidecadal Oscillation (AMO), a slow oscillation in Atlantic SSTs linked to the
Atlantic meridional overturning circulation. Changes in the AMO are often used to explain the heightened TC

activity observed since the mid-1990s.

An approach to quantifying the relationship between climate and tropical cyclone activity is to use modeling.
Among the models, downscaled models are often used as they can provide the necessary high-resolution to
accurately simulate tropical cyclone activity. Such technique is capable of resolving tropical cyclones using
boundary conditions supplied by the reanalysis datasets. This combines the advantage of relatively robust
estimates of large-scale conditions by the reanalysis with the high fidelity simulation of tropical cyclones by

the embedded high-resolution models.

In this study, we will use a series of tropical cyclone tracks produced by randomly seeding (in space and
Wind Speed time) weak, warm-core vortices in
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Figure 1: 500 synthetic tracks produced using MERRA reanalysis dataset.
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different reanalysis datasets. The
tracks of the resulting storms are then
given by a beta-and-advection model
driven by the flows derived from the
reanalysis wind fields whereas the
intensity of the storm is evaluated from
a high-resolution atmosphere-ocean
coupled tropical cyclone intensity
model (Emanuel, 2006). It should be
noted that most of the disturbances
seeded in the environment dissipate
before they can intensify to tropical
storm status.

We show in figure 1 the geographical distribution of 500 synthetic tracks obtained with the downscaling
technique, which produce randomly seeding disturbances evolving in the environmental conditions provided
by MERRA reanalysis. The tracks follow a relatively realistic trajectory, with many storms forming off the
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coast of Africa (where so-called Cape Verde storms tend to
form) and propagating westward towards Central and South
America. There is a small bias over the Gulf of Mexico and the
storms tend to live longer than the real world counterpart, but
overall, the trajectory of the tracks and their geographical
distribution tend to be fairly realistic. The tracks also have a
realistic intensity distribution (not shown) and a realistic
seasonal cycle (figure 2), with most storms forming in the
August-October period.
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Figure 2: Average number of storms per season for observed (blue)
and synthetic (red) tracks. The green bars represent the 90%
confidence interval (synthetic tracks).

The synthetic tracks have thus been shown to have a fairly realistic geographical, seasonal and intensity
distribution. Their interannual variability has also been studied (Emanuel, 2010) and was shown to be highly
correlated to the observed variability (see figure 3 for an example derived from MERRA reanalysis). What is
unknown at this time is which of the observed climate-hurricane connections were captured by this
technique. This is what we plan to investigate. We will use Poisson regression, which is a classical

‘ B ! : v : approach to analyze count data, in

_ome® | conjunction with the full list of climate
factors previously identified as influencing
cyclone variability over the North Atlantic
basin. This list of climate influences will
include influences such as ENSO, the North
Atlantic Oscillation and the precipitation
1975 860 965 Year 1990 565 2600 2005 over the Western Sahel region, to name a
few.
Figure 3: Observed (red) and simulated (blue) time series of Atlantic
Tropical cyclones. The synthetic tracks were produced using MERRA reanalysis.
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By analyzing the statistical significance of the regressions resulting from downscaled reanalysis, we will be
able to identify the climate-cyclones links that are captured in the downscaled TC. Furthermore, we will
compare the statistical significance of results obtained by downscaling typical reanalysis product with a
reanalysis product that assimilates only surface information (NOAA-CIRES 20th Century Reanalysis).
Because the latter only assimilates surface information, we expect the results to be somewhat degraded
compared to the former. By comparing the relationship observed in both downscaling exercises, we hope to
learn more about the processes controlling North Atlantic TC variability and which of these processes the
downscaling model manage or fail to capture. This will suggest possible modifications/improvements to
models used for dynamical forecasts.
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