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 The fast data assimilation (FDA) algorithms   are proposed  to study the atmospheric, oceanic and
environmental problems. They are based on a  variational principle. The numerical schemes are obtained
from the local optimum conditions for  objective functionals in the framework of splitting technique that is
used for the construction of the discrete form of the model of  processes.

Let’s take a mathematical model and a set of measured data
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where )( tDℑ∈ϕ& is the state function, )( tDRY ∈
&

is the vector of model parameters,  ),( YG
&

&ϕ  is a space

operator of the model, f
&

 is a source term, η&&

,r  are the terms describing  uncertainties and errors of the

model and data, mΨ
&

  is a set of measured data, )(ϕ*H is a model describing  association between the state

function and measured quantities,  operation m][  denotes  transfer to the measurement locations, )( tDℑ
is the space of  the state functions, )( tDR  is the space of admissible parameter values. The model (1) is

supposed to be defined on the space-time domain ],0[ tDDt ×= . D is the  domain with space coordi-

nates x
&

; ],0[ t  is  the time interval. The set of measurements is given on the subdomain t
m
t DD ∈ .

The problem considered can be solved with the help of variational approach and splitting technique.
The extended quality functional is introduced in the form
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 where ),(, 21=iM i are weight matrices, 10 ≤< α is a weight coefficient, indices hT,  denote transposi-

tion and discrete analog,
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is the variational form of the model (1), )(*
tDℑ∈∗ϕ&  is the co-state function, that is generalized La-

grange multiplier. In this case,  the model (1) plays the role of restriction to the state function and ex-
presses the  connection between model parameters and the state functions. The inner product in (5) is de-
fined from the form of the functional of the energy balance of the system.  The first  bracket in (4) is the
discrepancy functionals for the model of measurements and  model of processes.

 Three basic methods of data assimilation can be derived from the variational principle for (1)-(4).
They are the assimilation with adjoint functions, the procedure of the Kalman-Bucy filtering and FDA.
They are equivalent in accuracy but different  in realization and hence in their efficiencies.

It is reasonable to design  FDA using the properties of splitting technique and the conditions of lo-
cal minimum of goal functionals (4). In fact, to estimate  the state function, one can  originate from the
conditions of successive minimization of the functional that expresses  the amount of uncertainties of the
model and data. In other words, if uncertainties of the model  within the time interval ],[ 1 jj tt −  are  con-



centrated at the last stage of splitting scheme, giving the solution for the moment  jt , data assimilation can

be successively  combined with  realization of this particular stage,  leaving the rest stages without
changes.

The computational scheme of such approach can be obtained with the help of stationary condi-
tions for  the goal functional  (4) with respect to the grid components of the state function just on the inte-
ger  time steps jt . In short, this is the idea of fast data assimilation. It should be mentioned that the whole

family of fast data assimilation procedures  can be derived in the frames of the approach.  The form of the
particular algorithm  depends on the version of  splitting scheme and  approximations of the functionals

(4)-(5). The case when the grid  htD  is built in such a way that elements of the set m
tD ,  which is the

measurements’ support, coincide    with the grid points of h
tD , admits the simplest realization.  Thus, nu-

merical model with successive data assimilation is realized by the splitting scheme, the last stage of which
being modified.

The discrete  analog of  (4) can be written in the form
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where k  is the number of the  stage, n  is the amount of fractional  stages, kA  is implicit linearized ap-

proximation of split part of the model operator ),( YGk

&
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& ϕϕ , βαδ ,  is Kro-

necker-delta. The inner products in (6) are taken over space domains. The second line in (6)  is the  ap-
proximation of integral identity   (5) for the model (1) in terms of splitting technique.

The fast assimilation algorithm can be derived now from the  minimum conditions for the  modified

functional (6) with respect to the components of the state functions jϕ*  in the node points of the grid do-

main h
tD .  The modification is to exclude the functions ∗ϕη &&&

,, r  from (6) with the help of the discrete

analog of (2) and the splitting scheme for the model (1). The  splitting scheme is obtained by means of the

stationary conditions for the functional (6) with respect to the variations of grid components of ∗ϕ& .
Omitting intermediate transformations, let us  write the system of equations  of the last split stage for

calculation of  the state functions jϕ&   with the use of observed data jmΨ
*
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Here H
~

 is  the linearized  operator  of measurement model (2).
As  the starting point of our considerations is (4) , we have a possibility to design  (6) in such a way

that  all  operators  in the splitting schemes, including (7), are realized with the help of simple and efficient
direct ( non-iterative) numerical algorithms. Parameter α  is used to  control the assimilation procedure. If

1=α ,  the model ignores measured data, and if εα → , the data are predominate in the calculation of
the state functions. Here ε  is of a small positive value. The contribution of each element is defined in de-
pendence on the degree of   reliance  to this component. The observed data  are involved in modeling pro-
cess as soon as new information becomes available. The accuracy of the algorithm is defined by that of the
functionals’ approximation in (4) - (6).
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