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1. The Problem 
The Canadian Regional Climate Model (CRCM) 

(Caya and Laprise, 1999) is routinely used to provide 
regional climate change projections.  In order to assess 
the quality of CRCM, simulations run in the past must 
be compared with observational data.  

However, observations contain error, and the 
observational network is distributed inhomogeneously. 
In Canada the observational network is densest towards 
the South (near population centres), whereas model 
output is homogeneously distributed on a 45km X 45km 
grid, leaving open the question, how can a fair 
comparison be made?  

We propose to use a multi-variate, noisy-data 
interpolator to grid the observational network. However 
before doing so, the performance of the interpolator 
itself must be appropriately understood. Thus in the 
present experiment, we take CRCM screen temperature 
over the Quebec Region and choose noisy data subsets 
(simulating observational networks), trying to reproduce 
the original field using our interpolator.  

 
2. Methodology 
a. The model 
ANUSPLIN, developed at the Australian National 

University makes use of thin-plate smoothing splines to 
minimize noise, thus creating smooth fields (for a more 
complete description, see Hutchinson, 1997). Clearly, 
maintaining smooth fields comes at the cost of 
preserving data-fidelity. Through minimization of the 
appropriate penalty function, ANUSPLIN finds the 
optimal balance between exact data interpolation 
(keeping loyal to the data, leaving rough fields) and 
regression (producing a smooth, less loyal field), 
objectively.  

b. The data 
Presented here (Figure 1) is screen temperature (ST) 

produced over the Quebec region from top left (70°W, 
66°N) to bottom right (70°W, 40°N), on July 1st, 1978 
using the CRCM. This dataset was thinned by leaving 
only every Nth row and column (termed NxN).  Another 
subset (STN) corresponding to actual observational 
stations present in Canada at the time, was used. The full 
(1x1) dataset was also sullied with random 
(uncorrelated) noise at the 2, 5, 10, and 20% (of the 
maximum field range ~25°C) levels (corresponding to 
~±0.5, 1, 2.5, 5°C).  At these  noise  levels,  the  thinning 
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Figure 1. Summer Screen Temperature over Quebec  

with superimposed STN mask (black dots) 
 
procedure was then used to obtain noisy data subsets.  

The experiment was then to interpolate from the 
NxN sparse fields to the original (dense) grid in order to 
determine the effect of selection (sparseness) as the 
fields deteriorate. Similarly the performance of 
ANUSPLIN was ascertained in the face of noise. Finally 
the noisy sparse sets were used to simulate an 
observational network where both effects were present.  

c. Diagnostics 
Principal diagnostics include difference maps 

depicting the difference between the fitted field and the 
original set, with the lighter colours depicting over-
estimation and the darker, under-estimation.  

The variance estimate, � 2 (not shown), is the sum-
of-squares of the fitted residuals, and represents the 
common data error. The model standard error, �

m
2 (also 

not shown), represents the distributed Bayesian error-of-
fit estimate. The prediction standard error, �

p
2, 

represents the total error, as contributed to by both of 
these errors: 

�

p=( �

m2 + � 2)1/2 (1). 
Hence this is the distributed error we could expect to 
calculate from our model given a certain data set. 

 
3. Results 
Once the original field is removed from the 

interpolated field with relatively high level of noise 
(10% or ±2.5°C) and sampled with few data points (4% 
of the original set), we can see that the interpolator 
performs well (Figure 2) with 60% of the difference 
over land within ±1°C (if we include water, this drops to 
50% over the whole domain). Approaching the 
coastline, values are underestimated, as over-smoothing 



occurs in order to lessen the gradient. Reaching the 
water the opposite is true for the same reason. The effect 
of the land-sea interface is reduced in the St. Lawrence 
as it is interior to the domain. In the Hudson, Ungava, 
and James Bays, as well as Hudson Strait, and the 
Labrador Sea, there is less data on at least one side 
(domain border), so over-estimation occurs in accord 
with the rest of the domain (higher temperature). 

The prediction standard error (equation 1) rises to 
±3°C at noise level 10% and 5x5 data subset, but 

 
Figure 2. Difference of interpolated field (10% noise,  

          5x5 dataset ) from original field (fig.1) 
 

remains as low as just over ±1°C for no noise, 2x2 
subsets, or using all data and noise levels less than 5% 
(not shown). Shown (Figure 3), are the �

p for all cases 
with NxN subsets along the horizontal, and noise 
increasing vertically). 

  
Figure 3. Prediction standard error composites 
 

Interpolation from the realistic, scattered 
stations (see Figure 1 for distribution) is poor over 
water but good on land. The difference (interpolate 
less original field) map (Figure 4) shows a range that 
is greater by 2°C than that of the difference field of 

the 5x5 subset with 10% noise (Figure 2). The range 
is also shifted upwards (indicating overestimation) 
because the stations are mostly located on land, so 
values over water are under-represented. This is 
seen in over-estimated values upwards of 15°C in 
Hudson Bay. However, 57% of the total area is 
within ±1°C, due to better interpolation over land. 
Indeed, this is comparable to fields somewhere in 
the range of 2-5% noise for the 5x5 subset, or 5-10% 
noise for the denser 3x3 and 4x4 subsets.   

 
Figure 4. Difference of interpolated field (STN)  

              from original  
 

4. Conclusions 
Problems occur mainly in regions of sharp 

change between land and water near the boundaries 
where the gradient can be as high as 8°C/100km. 
However, in the St. Lawrence for example, these 
steep (10°C/100km) gradients do not pose a problem 
as they are sufficiently interior (hence more 
anisotropically surrounded by data). Irregularly 
distributed data leads to exceedingly poor sampling 
in data-sparse regions, with better results over land. 

Further work is being done to ascertain the 
effect of inclusion of the boundary, extra stations, as 
well as field continuity (precipitation, seasons, 
climatologies), and spatial distribution (non-
homogeneous sets). 
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