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1. INTRODUCTION

Extended-range weather prediction depends in a crucial way

on skill at forecasting the duration of a blocking event or

other persistent anomaly that is under way at initial forecast

time. The ability to forecast the subsequent onset of another

persistent anomaly—after the break of the current one—has

proven even more elusive.

To address this crucial problem, we study the application of

advanced data assimilation methods on predicting the

transitions between atmospheric weather regimes. Marshall

and Molteni’s (1993) three-level quasi-geostrophic (QG)

model in spherical geometry has been shown to have a fairly

realistic climatology and exhibit multiple regimes that bear

some resemblance to those found in observations. Using this

model, we study the transition mechanism between such

regimes.

2. CLUSTERING ANALYSIS

The dataset for analysis was obtained from an 18,000-day

perpetual-winter simulation of our QG model — whose three

levels are at 200 mb, 500 mb and 800 mb — on a T21 (64 x

34) grid. In order to examine the phase-space structure of

atmospheric dynamics in such a high-dimensional system, it

is necessary to reduce the dataset’s dimensionality. For this

purpose, we apply empirical orthogonal function (EOF)

analysis to the unfiltered 500-mb level streamfunction

anomalies in the Northern Hemisphere (NH), where the

gridded data points are weighted by the cosine of their

latitudes. The leading 10 EOFs are responsible for 47% of the

variance of the dataset, the first mode capturing 11%, and the

second 6%.

In order to objectively identify weather regimes in the QG

model simulation, we apply two independent clustering

techniques and compare the results (see Table 1 of Ghil and

Robertson 2001). One technique is the k-means algorithm

used by Michelangeli et al. (1995) and the other is the

Gaussian mixture model used by Smyth et al. (1999) for the

classification of NH weather regimes in observed geopotential

height fields.

For a given number d of leading EOFs, both techniques

provide the number of clusters k and the cluster centroids in a

d-dimensional subspace of the model’s phase space. We want

each cluster to correspond to a weather regime of the QG

model's physical space. Therefore it is critical for our study to

optimize the classification into clusters over various

subspaces.

The classifiability index of the k-means algorithm measures

the stability of the cluster solutions as a function of k, across

different initial (random) seeds of the algorithm, based on the

correlation between the cluster centroids. The classifiability

index of the QG model simulation is very high for both k = 4

and k = 3. We thus conclude that the k-means algorithm alone

cannot identify the optimal clusters of the QG model

The Gaussian mixture model uses a linear combination of k

Gaussian density functions. Unlike the k-means algorithm,

each data point in the d-dimensional space can have a degree

of membership in several clusters, depending on its position

with respect to the centroid and the weight of a cluster (Smyth

et al. 1999).

According to the cross-validated log-likelihood criterion the

mixture model consistently gives k = 6, which is higher than

the values k = 3 or 4 obtained by the k-means algorithm.

Hannachi and O’Neill (2001) found that the Gaussian mixture

model tends to overfit the clusters when the distribution of the

data is not Gaussian. This is the case here, too. In fact, when

using either half of the entire dataset, the cross-validated log-

likelihood suggests a higher probability for k = 4 and 5 than

for k = 6

Next, we compare the anomaly maps of the centroids

produced by the two methods (see, for instance, Table 2 in

Robertson and Ghil 1999).
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Fig.1: Probability density function of the QG model’s 500-mb

stream function field, as estimated by the mixture model for k

= 4 and d = 5 and projected onto the plane spanned by EOF-1

and EOF-2.

To do so, we compute the pattern correlation coefficients of

the cluster centroids in physical space for pairs of visually

similar streamfunction anomaly maps produced by the two

clustering techniques and compare the results for different

values of k. We obtain the maps that correspond to the cluster

centroids in the d-dimensional subspace by computing the

EOF expansion of the 500-mb streamfunction field, i.e. the

QG model’s second level, truncated at d = 10.

The best agreement was found between the two methods for



 k = 4 for all values of d. We conclude, therefore, that k = 4

yields the optimal set of clusters for our QG model. The 500-

mb streamfunction anomaly maps obtained by the k-means

method for the cluster centroids shown in Figure 1 are plotted

in Figure 2.

Fig. 2: Streamfunction anomaly maps of cluster centroids

obtained by the k-means algorithm, for d = 5 and k = 4. Land

masses are shaded.

Each of the regimes in Figure 2 represents one of the opposite

phases of two spatial patterns. Clusters c and d capture the

two extreme phases of the North-Atlantic Oscillation (NAO),

while their patterns outside the Atlantic sector complete a NH

wavenumber-three pattern. Clusters a  and b have a central

feature that extends over the whole Arctic and is rather

zonally symmetric, with a substantial wavenumber-four

component. It thus has certain features in common with the

Arctic Oscillation (Thompson and Wallace 1998) and with

Mo and Ghil’s (1988) North-South seesaw. We denote these

four regimes by AO+ (panel a), AO
– 

(panel b), NAO+ (panel

c) and NAO
– (panel d).

3. PREFERRED TRANSITIONS

Using the clustering results for k = 4, the Markov chain of

transitions between the four regimes is obtained. In the d-

dimensional space, each weather regime is defined by the

ellipsoid of covariance around the centroid, whose semi-axes

equal the corresponding eigenvalues, as shown in Figure 1. A

data point is assigned to a weather regime if it lies within the

corresponding ellipsoid. If a data point belongs to several

ellipsoids, we assign it according to the maximum probability

value.

The preferred transition paths between the four regimes are

shown in the Table 1.

AO+
AO

– NAO+
NAO

–

AO+ 0.24 0.01 0.34 0.40

AO
– 0.02 0.51 0.07 0.39

NAO+ 0.49 0.06 0.25 0.21

NAO
– 0.40 0.17 0.22 0.21

Table 1: Transition probabilities estimated using mixture

models regimes for d=5; transitions that are significant at 95%

are in bold (Vautard et al. 1990).

Three of the four regimes have highly statistically significant

reinjection rates. Aside from these bold diagonal entries in the

table, we note that a strong preferential path leads from both

the zonal sectorial regime NAO+ and the blocked NAO
– to

the high-index hemispheric regime AO+, as well as from the

NAO
– to the low-index AO

–
. The opposite transitions from

AO+ to NAO+ and NAO
–

, and from AO
–

 to NAO
–

 are also

highly significant. A preferential cycle connects, moreover,

the sectorially blocked and zonal regimes NAO
–

 to NAO+

and back. The hemispheric regimes AO
–

 and AO+, however,

are not directly connected to each other. This is because AO
–

and AO+ are separated by NAO
–

 and NAO+ in the

probability density function (Fig. 1).

4. DATA ASSIMILATION USING PSAS

We use NASA Goddard’s Physical-Space Statistical System

(PSAS; Cohn et al. 1998) data assimilation framework to

carry out identical-twin experiments with our QG model. The

purpose of these experiments is to clarify the physical

mechanisms of the regime transitions captured in Table 1.

Synthetic observations are simulated to correspond to both

conventional and satellite networks. Their effects on

pinpointing the transitions between regimes and capturing

their causal mechanisms are evaluated. Implications of

observing system design on extended-range prediction in the

model are discussed.

More complete version of this communication can be found at

http://www.atmos.ucla.edu/tcd/MG/mg_ref_preprints.html .
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