
Decadal Climate Forecasting Project
• Project leader: Richard Matear 

3 Key activities: 

1. Data Assimilation, Climate Modelling and Ensemble 
Prediction  (Leader: Terry O’Kane) 

2. Processes  and Observations (Leader: Bernadette 
Sloyan) 

3. Verification and Application (Leader: James Risbey)
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Climate Analysis Forecast Ensemble (CAFE) System 

• The work presented here is due to the efforts of 
the data assimilation, climate modelling & 
ensemble prediction team 

Paul Sandery, Pavel Sakov, Matt Chamberlain, 
Didier Monselesan, Vassili Kitsios, Lauren Stevens, 
Mark Collier
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CAFE System
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Go to start of metadata 

The EnKF system runs a 96 member ensemble on a 30 day sequential cycle 
 • System carries out coupled data assimilation 
 • Members are initialised directly to their own analysis 
 • Reanalysis starts 1st January 2002 
 • Initial ensemble is derived from restarts taken from 1st of January from different years 

Features 
Asynchronous data assimilation 
 • The model is compared to the observations each day within the cycle and this information is used to 

calculate the analysis increments  
 • All metrics-statistics are forecast errors derived asynchronously in observation space - This provides a good 

indication of system performance 
SST bias correction 
 • An ensemble of SST bias fields is added to the state vector 
 • A time-space varying SST bias is detected for each member based on differences between itself and the 

observations via fitting a linear stochastic model 
 • The bias is subtracted from the innovation vector for SST and the mixed layer before calculating increments 
 • The ensemble mean SST forecast and analysis bias fields are calculated each analysis cycle 
Dynamic ice mask for the DA 
 • A composite ensemble ice mask is generated using ice concentration 
 • This composite is based on all members and all days within the cycle 
 • Its purpose is to limit the assimilation of observations to ice-free areas only 

https://confluence.csiro.au/display/DFP/EnKF+Prediction+System#page-metadata-start
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Observations 
The following ocean and surface observations are used for assimilation and verification 
 • RADS altimetry 
 • SST - NavOceano, AMSRE, AMSR2, PATHFINDER + VIIRS and Himaware-8 from 2016   
 • SSS - AQUARIUS, SMOS 
 • In-situ T/S - ARGO, CTD, PIRATA, TAO from CARS31 (CSIRO) and MMT (BoM NRT) 

Atmospheric reanalyses from NCEP v1 and JRA-55 are employed either as fields to relax the  
atmospheric state vector (zonal and meridional winds, temperature, specific humidity and surface  
pressure) or are directly assimilated.   
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Direct verification of (ocean) assimilation and forecast against observations 
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Spatial pattern of analysis SST biases w.r.t. HadISST (January 1st 2005)
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Coupled ocean-atmosphere assimilation: 
Identifies where ocean observations covary and project onto 
atmospheric variables (and vice versa)



Adjusting DA increments derived from ocean and coupled covariances 
Dec 2015 (localization radius: 4000km atmosphere, 750km ocean)
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Ensemble spread - forecast error: EnOI + BVs (10) versus ETKF (96)
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Case 2: At 1 month (30th April year 7) 

Note: we have projected onto the tropical 
ocean but there is a significant coherent 
response in the troposphere at the NH 
midlatitudes via modulation of the Hadley 
Cell. 

Potential for longer timescales via Rossby 
wave breaking on PNA etc.

Ensemble mean of perturbation vectors (shaded) 
Control (contours)

Ensemble mean of perturbation vectors (shaded) 
Control (contours)

Ensemble mean of perturbation vectors (shaded) 
Control (contours)
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 • Covariance localisation and the addition of increments due to coupled covariances can lead to 
imbalance in the analysed atmospheric state. We apply NMI to reduce initialisation shock and as a 
diagnostic tool. Here NMI is applied to the JRA reanalysis.

Balance
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BIASES compared to ERA-Interim 
ACCESS amip: v1.4, vaoyb, 10 years; GFDL: control v2, 300-309,10years 

Models: 
GFDL: AM2, LM2, SIS, MOM5,WOMBAT (BGC) 
(upgrading to AM3 & LM3) 

ACCESS ESM1.5: 
UM7.3, CABLE, CICE, MOM5, WOMBAT 
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become increasingly pronounced 
with increasing lead time. These 
differences raise the question of 
whether some models are systemati-
cally more skillful than others.

CORRELATION AND ROOT MEAN SQUARED 
ERROR. Figure 5 shows the temporal 
correlation between model predic-
tions and the corresponding obser-
vations as a function of target season 
and lead time, with a separate panel 
for each model. The correlation 
skill patterns of the models appear 
roughly comparable. All indicate 
a northern spring predictability 
barrier, with short lead prediction 
skills having a relative minimum for 
northern summer, extending to later 
seasons at longer lead times. Relative 
to the statistical models, Fig. 5 shows 
higher correlation skills by many of 
the dynamical models for seasons 
in the middle of the calendar year 
that generally have lowest skill. By 
contrast, for seasons having highest 
skills (e.g. northern winter target 
seasons at short to moderate lead 
times), skil l differences among 
models and between model types 
appear small.

Figure 6 shows individual model 
correlation skills as a function of lead 
time for all seasons combined, while 
the top and bottom panels of Fig. 7 
show skills for the pooled target sea-
sons of NDJ,5 DJF, and JFM, and 
for MJJ, JJA, and JAS, respectively. 
Overall, model correlation skills at 

5 Seasons are named using the first letters of the 
three constituent months (e.g., DJF refers to 
December–February).

FIG. 6. Temporal correlation between model forecasts and observa-
tions for all seasons combined, as a function of lead time. Each line 
highlights one model. The eight statistical models and the persistence 
model are shown with dashed lines and the cross symbol.

FIG. 7. (top) Temporal correlation 
between model forecasts and observa-
tions for Nov–Jan, Dec–Feb, and Jan–
Mar as a function of lead time. Each 
line highlights one model. The eight 
statistical models and the persistence 
model are shown with dashed lines 
and the cross symbol. (bottom) As 
at top, but for May–Jul, Jun–Aug, and 
Jul–Sep.
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Barnston et al BAMS May 2012 
Skill of real-time ENSO model predictions during 2002-2011



Improving ENSO: playing with horizontal friction and vertical mixing
Observations CAFE v1 ACCESS – ESM1 CAFE with ACCESS-ESM
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CURRENT STATUS OF HINDCAST / FORECAST DATA SETS AND NEAR FUTURE    

v0 

2yr or 5yr forecasts of months from Feb 2002 to May 2016 using bred_vectors as IC  

NOTE: this run has a bug in the initialization of the atmosphere and so initial (t=0) atmospheric states do not correspond to any particular date. 

v1 

2yr or 5yr forecasts of months from Feb 2002 to May 2016 using corrected data assimilation and bred_vectors as IC. 

Data assimilation is EnOI with fixed but seasonally evolving background covariances. Only ocean observations are assimilated and the atmosphere is relaxed to  

interpolated monthly mean NCEP v1 reanalysis fields. 

Bred Vectors are generated each month about the analysed ocean state from the data assimilation. Member 1 is the control (unperturbed) and members 2-11 have  

anomalies added between 20S-20N in the upper 2000m of the ocean perturbed. 

v2 

Hindcast using approach based on Meehl et al. (2016) Nat. Comms.   
Ocean restarts from ocean experiment forced with JRA-55, atmospheric restarts from different years of control simulateon 
Hindcasts from Januarys of 2000 to 2017.   

v3 

Early 2018: 

• 96 member EnKF  

• Normal mode initialisation 

• SST and SLA bias correction in the assimilation  

• Assimilation of atmospheric (JRA-55 reanalysis) data 

• Combined Bred Vector and EnKF initial forecast observations 

• Improved climate model (corrected ENSO phase locking, improved summertime Antarctic sea ice and reduced southern ocean SST biases)



• https://research.csiro.au/dfp/

External Website
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Theory



Simple Climate Model - coupled attractor with fast, medium and slow 
dynamics

21

The lowercase x, y and z represent the fast modes, with the e and t 
subscripts designating the quickly varying, small amplitude “extra 
tropical” and “tropical” variables, respectively. The uppercase X, Y and 
Z represent the slowly varying, large amplitude “ocean” variables. Here 
the extra-tropics and tropics are weakly coupled in the horizontal (ce = 
0.08) and vertical (ct = 0.08) directions while the tropics and ocean are 
fully coupled in the horizontal and vertical directions (c = cz =1). tau and 
S are temporal and spatial scaling factors, respectively, for the ocean 
variables. 

Extratropical Atmosphere 

Tropical Atmosphere

Ocean -  slow dynamics



EnOI versus ETKF – the role of flow dependant covariances

22

Assimilation of ocean (slow) and mid-latitude atmosphere (medium) observations. Fast tropics are unconstrained. 

EnOI (static background covariances) ETKF (flow dependent background covariances) 

Assimilation of ocean (slow) observations only 

Assimilation of ocean (slow) observations only 



Conclusions:
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A properly observed ocean is required in order to constrain the slow “climate” 
manifold. 

For multi-year forecasting we do not try to track the fast convective (stochastic) 
scales but rather the slow predictable modes. 
  
To do this for the attractor model, the EnOI system requires both the ocean and 
extra-tropical atmospheres to be observed. This mirrors our present forecast 
system where we assimilate into the ocean and relax to reanalysed large scale 
atmospheric state.  

In the case of the ETKF it is sufficient to assimilate only ocean observations but 
generate coupled covariances between ocean and extra-tropical atmosphere. 

We are now examining whether this holds in a ETKF variant of our forecast system.  


