WCRP Grand Challenge

Carbon Feedbacks in the Climate System

coordinated by: **TA**

TATIANA ILYINA

PIERRE FRIEDLINGSTEIN

Max Planck Institute for Meteorology

University of Exeter

with contributions from: G. Brasseur, V. Brovkin, P. Canadell, D. Carlson, P. Ciais, B. Collins, N. Gruber, N. Harris, M. Hegglin, G. Hugelius, C. Jones, C. LeQuéré, J. Marotzke, V. Ramaswamy, C. Sabine

KO workshop in November 2017

Carbon Feedbacks in the Climate System Report from the Kick-off Workshop 21 - 22 November 2016, Hamburg, Germany 0-C-(March 2017 WCRP Publication No.: 6/2017

40 participants

covering a wide range of expertise, i.e. plant physiology, marine biology, atmospheric inversions, land and ocean biogeochemistry, paleo-climate, Earth system modelling, etc.

plan of action

including organization of a brain storming meeting on predictions of the carbon cycle

The Grand Challenge

to understand how biogeochemical cycles and feedbacks control CO₂ concentrations and impact on the climate system

Uncertainty in carbon cycle projections (>300 ppm) is comparable to differences across socio-economic scenarios.

IPCC AR5

AR5 WG1 SPM:

"Based on ESMs, there is high confidence that the feedback between climate and the carbon cycle is positive in the 21st century."

CMIP5

- >40 climate models (AOGCM)
- 10 ESMs (i.e. with BGC components)

The Grand Challenge

to understand how biogeochemical cycles and feedbacks control CO₂ concentrations and impact on the climate system

Large uncertainty in CO_2 emissions compatible with a given climate target. Budget for the 2°C target is about 700GtC to 1300GtC. Given 550 GtC emitted so far, that's **15 to 75 years of current emissions**.

IPCC AR5

AR5 WG1 SPM:

"Cumulative total emissions of CO_2 and global mean surface temperature response are approximately linearly related. Any given level of warming is associated with a range of cumulative CO_2 emissions."

Uncertainty

- Carbon feedbacks
 (CO₂ emissions
 → CO₂ concentration)
- Climate feedbacks (CO₂ concentrations
 → climate response)

The Grand Challenge

Guiding questions:

- 1. What are the drivers of land and ocean carbon sinks?
- 2. What is the potential for amplification of climate change over the 21st century via climate-carbon cycle feedbacks?
- 3. How do greenhouse gases fluxes from highly vulnerable carbon reservoirs respond to changing climate (including climate extremes and abrupt changes)?

Research initiatives:

- I. Process understanding on land (questions 1, 2, 3)
- II. Process understanding in the ocean (questions 1, 2, 3)
- III. Learning from the existing record (question 1)
- IV. Towards improved projections (questions 2, 3)

1. What are the drivers of land and ocean carbon sinks?

key mechanisms are identified, but with large uncertainties regarding Ocean: their strength, regional and multi-year variability

Southern Ocean is responsible for about half of the ocean carbon sink

Southern Ocean C-sink variations

- large spread in both observational and modeled ٠ estimates of the ocean carbon sink
- poor understanding of origins of variability
- unclear relative contribution of physical vs. biological processes

Hongmei Li in prep.

1. What are the drivers of land and ocean carbon sinks?

the main barriers relate to understanding of the actual processes driving the sinks

Fair global agreement between land carbon models and estimate from global carbon budget

Models

Land:

Research Initiatives

- I. Process understanding on land
 - Quantification of the strength of the CO₂ fertilization, photosynthesis and limitations from nitrogen cycle
 - Quantification of gross carbon fluxes sensitivity to warming and variability (and changes in hydrology)
 - Understanding of ecosystems vulnerability and risk of carbon loss
- II. Process understanding in the ocean
 - Quantification of the strength of the Southern Ocean CO2 uptake
 - The relative role of physical vs. biological processes in determining the ocean carbon sink
 - Understanding the origins of variability (from seasonal to decadal) of the ocean carbon sink
 - Relationship between anthropogenic carbon and heat uptake

Opportunities for rapid progress of this Grand Challenge

ESMs are becoming "standard" tools for the climate community

- CMIP6 will have more than 20 ESMs (CMIP5 had 10 ESMs)
- C4MIP is among the most popular CMIP6 endorsed MIP (along with ScenarioMIP and OMIP)
- IPCC AR6 will "very likely" heavily rely on those simulations for assessment of climate projections, compatible emissions, TCRE, climate impact on land and marine ecosystems, irreversibility, etc
- Advances in observational techniques (e.g. argo floats, satellite data, improved paleo reconstructions)
- Urgent need to have better understanding of key BGC processes and their feedbacks on the climate system.

Opportunities for rapid progress of this Grand Challenge "Why now ?"

CMIP6

C4MIP

- 1% runs: feedback analysis
- E-driven scenarios: climate change amplification

Deck

- Historical: evaluation
- 1% runs: feedback analysis
- ScenarioMIP
 - C-driven scenarios: C-cycle vulnerability to future climate
- OMIP, LS3MIP, DCPP
 - process understanding and evaluation

Observational networks

- SOCAT and GLODAP
- Argo floats
- New satellite data (e.g. CO₂)
- Flux measurement networks
- process oriented obs.

WCRP projects

CLIVAR, SPARC

Future Earth projects

- GCP
- AIMES, SOLAS, ILEAPS, IMBER
- Knowledge Action Networks

Other GCs

- GC-Cryosphere
- GC-Decadal?

Towards decadal predictions of the carbon cycle

Roland Séférian et al., PNAS 2014

Predictive skill of the tropical Pacific NPP of up to 3 years

Hongmei Li et al., Nature Com. 2016

Potential predictive skill of the North Atlantic CO_2 uptake of up to 4-7 years

Potential for GC-carbon/GC-predictions interactions

- Paris Agreement and Global Stocktake: Where will we be in 2030?
- Carbon cycle has pronounced interannual (mainly land) to decadal (mainly ocean) variability. Is the variability of the carbon cycle predictable?
- How well can we reproduce past variability (hindcast) of the coupled climate and carbon cycle system?
- Can we predict climate and carbon cycle in the next couple of years/ decades?
- Given national INDCs, what is the likely/range carbon sinks, atmospheric CO2 increase and climate response to be expected by 2030, when accounting for natural variability?
- Do we have CMIP6 simulations that can help addressing these questions?