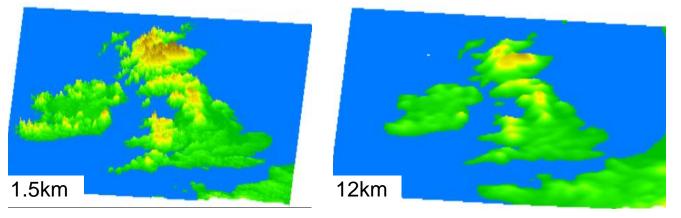


The changing character of rainfall at convection permitting scales

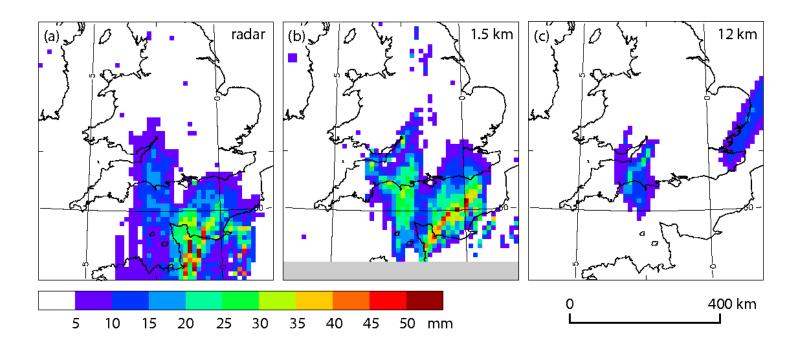
×10:21

Lizzie Kendon


Thanks to: Nigel Roberts and Steven Chan

Benefits of high resolution in NWP

Use of 'convection-permitting' models is now common practice in numerical weather prediction (NWP)


- Explicitly represented convection
 - Diurnal cycle, showers coming inland, organisation, convective outflows, back-building, realistic rates
- Better local topography
 - Sea breeze convergence, elevated heating, valley cooling, localised fog, orographic enhancement of rain, peninsular shower bands

Lean et al 2008, Roberts & Lean 2008, Weisman et al 2008, Schwartz et al 2009 & Weusthoff et al. 2010 © Crown copyright Met Office

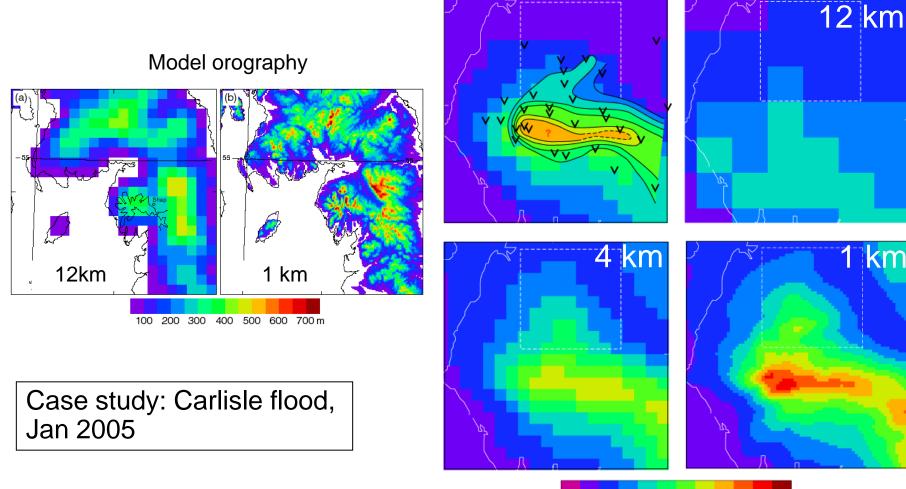
Improved representation of convective storms in 1.5km forecast model

5-hour rainfall accumulations for (a) radar, (b) 1.5km forecast model, (c) 12km forecast model

Case study: 27th July 2013; Courtesy: Nigel Roberts

Improved representation of orographic rain at kilometre-scale

Rain gauge observations and model forecasts


200 mm

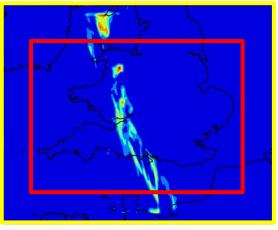
40

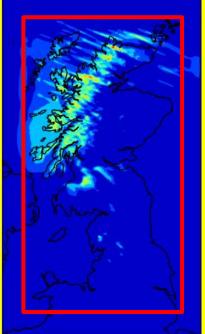
80

120

160

© Crown copyright Met Office

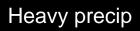


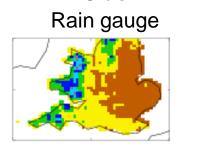

First regional climate simulations at 1.5km resolution over UK

1) First climate simulations at convection permitting scales run over *southern UK*, as part of CONVEX project.

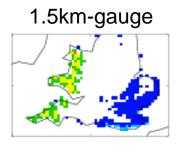
- Driven by 12km European RCM, which is in turn driven by ERA-interim or 60km GCM.
- ≻Runs completed:
 - Reanalysis driven run (1989-2008)
 - 13y control (1996-2009) and future (~2100) climate change experiments

2) Climate simulations, with identical set up, now complete for *northern UK*, as part of NUTCAT project

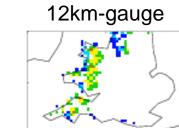



Met Office Hadley Centre

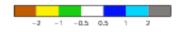
Mean precip


Dry day occurrence

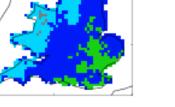
Daily precipitation (1990-2004)



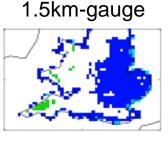
Obs



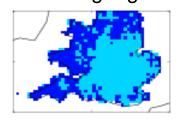
Bias



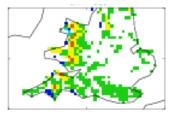
Bias



Rain gauge



Rain gauge



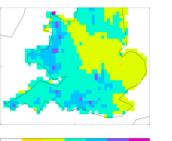
12km-gauge

www.metoffice.gov.uk

1.5 20

1.5km-gauge

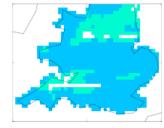
Observations


Model bias

Future change

www.metoffice.gov.uk

Future changes in heavy rainfall at hourly timescale


Winter

12km model - radar

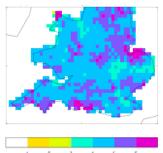
 $^{-2}$ D

12km future change

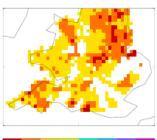
2 3

-3 -2 -1 0

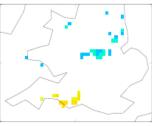
-3 -2



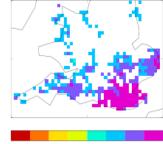
Ū.


1.5km model - radar

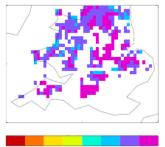
Summer



12km model – radar



12km future change



-3 -2 -1 D 2 3

1.5km model - radar

1.5km future change

0

-2 -1

-3

Observations

20

10 mm/h rainfall, ı to 0.5 0.2

0

20

10

mm/h

rainfall,

peak

0.5 0.2

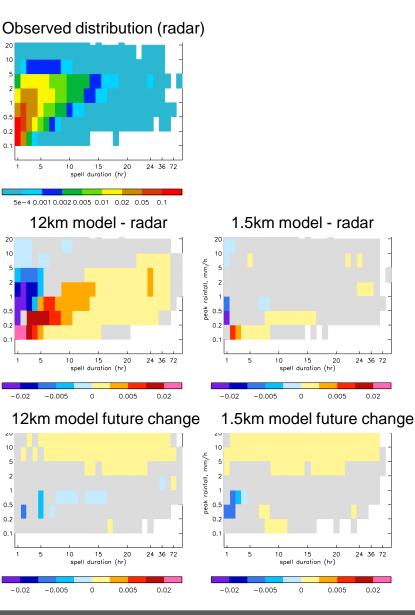
> 20 10

> > 2

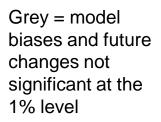
0.5

0.2 0.1

rainfall, mm/h 5


peak

Model bias


Future change

Duration-intensity characteristics of rainfall

Southern UK, Winter

Kendon et al, 2014, Nature Clim. Change

Observations

20

10

rainfall, mm/h 2

peak 0.5 0.2

0

20

10

mm/h

rainfall,

oeak

0.5

20

10

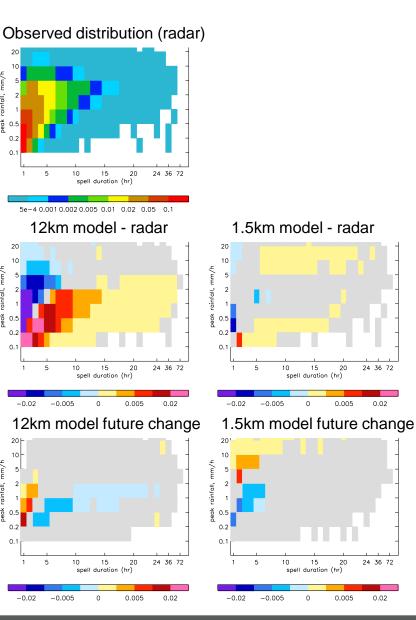
2

0.5

0.

0.1

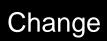
rainfall, mm/h 5

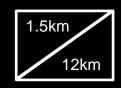

peak

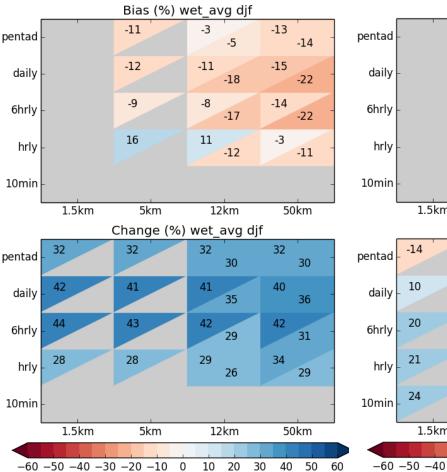
Future change

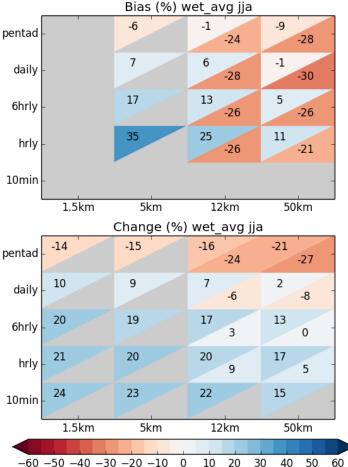
Duration-intensity characteristics of rainfall

Southern UK, Summer


Grey = model biases and future changes not significant at the 1% level

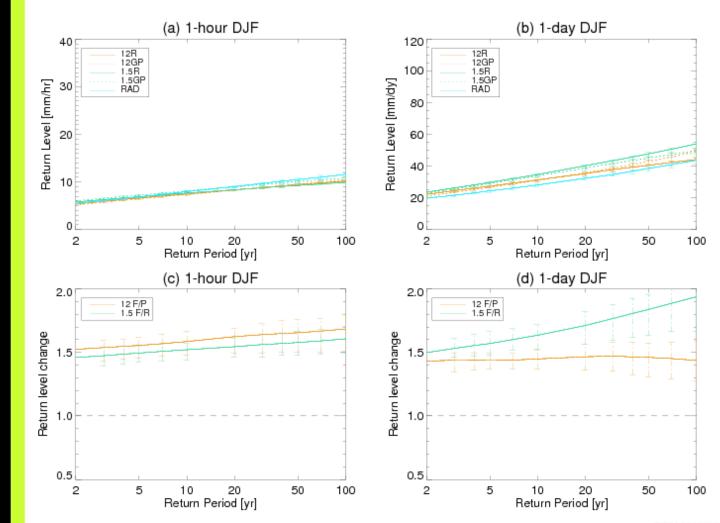

Kendon et al, 2014, Nature Clim. Change


Bias

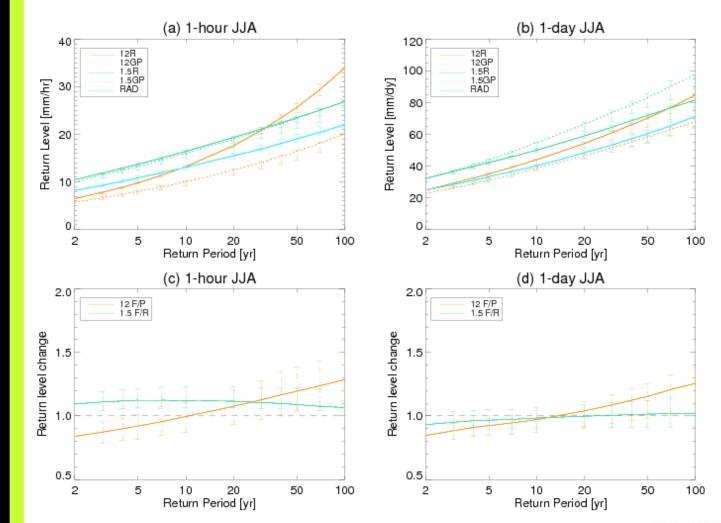


Changes in rainfall intensity across space and time scales

Winter

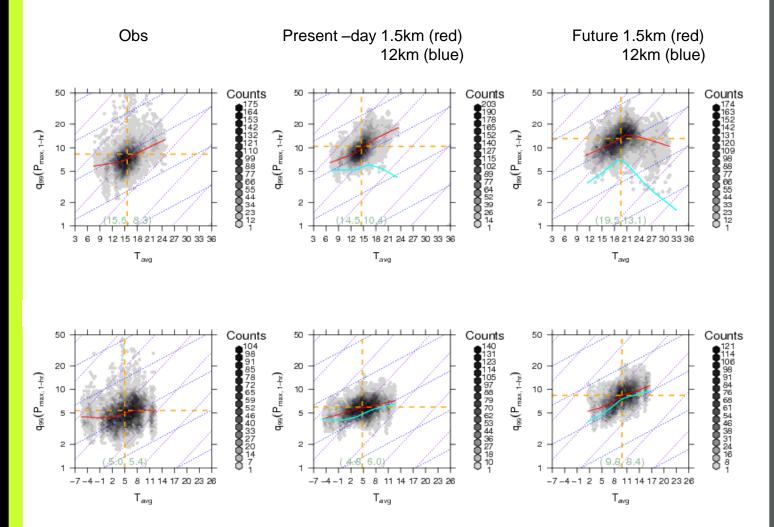


Summer


Change in extremes in winter

Chan et al, 2014, ERL

Change in extremes in summer


Chan et al, 2014, ERL

JJA

DJF

Temperature-precipitation scaling

Chan et al, Nature Geosci., accepted

Resolution dependence of UK projections

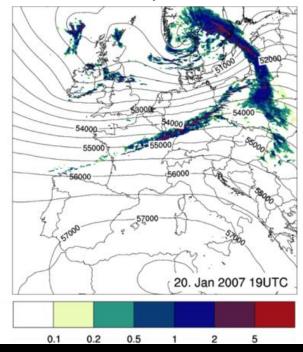
Changes which are robust from coarser to higher resolution RCM, driven by large-scale changes inherited from driving GCM	Changes for which representation of the local storm dynamics, or high resolution orography, is important
Decrease in summertime mean rainfall	Intensification of hourly rainfall in summer
Increase in wintertime mean rainfall	Changes in hourly and daily summertime extremes
Increase in heavy rainfall in winter	Changes in rainfall extremes over steep orography in winter
Large decrease in rainfall occurrence in summer	Changes in rainfall duration

Similar results found for 2.2km simulations over Alps using COSMO-CLM (Ban et al, 2015, GRL)

Summary

- Convection-permitting models simulate realistic hourly rainfall characteristics, unlike coarser RCMs, giving us confidence in their ability to project future changes
- Future projections of increases in UK winter rainfall are robust from coarser to higher resolution models.
- Convection-permitting model shows an intensification of hourly rainfall in summer not seen at coarser resolution

Significantly more events exceeding high thresholds (30mm/h) indicative of flash flooding


- Convection-permitting model captures present-day scaling between temperature and precipitation intensity, and indicates this cannot simply be extrapolated into the future
- Accurate representation of the local storm dynamics is essential for predicting changes to convective extremes
- Similar results obtained for 2.2km COSMO-CLM over Alps compared to 1.5km MetUM over southern UK

Convection-permitting climate change simulations to date:

- 1.5km UK (Kendon et al 2014); 2.2km Alps (Ban et al 2015), 2.8km SW Germany (Fosser et al submitted)
- How robust are changes in hourly rainfall extremes in convection-permitting models?
 - Need for coordinated modelling experiments to assess uncertainties (H2020 EURO-CORDEX)
 - ▶2.2km pan-European climate simulations
- UKCPnext
 - First probabilistic projections at km-scales

Pan-Europe 2.2km

Hadley Centre

