Potential impacts of aircraft emissions on the air quality near the ground (importance of heterogeneous chemistry and nitrate radicals)

Huikyo Lee, Donald J. Wuebbles, Seth C. Olsen and Kenneth Patten

(Department of Atmospheric Sciences, University of Illinois)

Introduction

- Rapid increase of the demand for aviation transport
- Recent studies [e.g. Barrett et al., 2010] suggest that current non-LTO (non-landing and takeoff) aviation emissions (climb/descent + cruise altitude emissions) impact local air

Aviation emissions and air quality in the boundary layer

Overall, wintertime (January) perturbation due to aviation emissions is larger than summer (July).

Changes in NO_v

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

quality increasing premature deaths.

Impacts of aircraft emissions on the distribution of gases and aerosols near the ground

Table 1. The total annual emissions from aircraft used in this study. Unit of the emissions is Tg (teragram)/year.

	NO _x	СО	SO ₂	black carbon (BC)	organic carbon
	(as NO)				(1/3 of BC)
total emissions	1.347	1.692	0.164	0.007	0.002
LTO emissions	0.126 (9.5 %)	0.624 (37.3 %)	0.0167 (10.3 %)	0.00134 (19.9 %)	0.000446
climb/descent emissions	0.489 (36.9 %)	0.732 (43.8 %)	0.0518 (32.0%)	0.00296 (44.1 %)	0.000985
cruise altitude emissions	0.712 (53.7 %)	0.315 (18.8 %)	0.0931 (57.6 %)	0.00242 (36%)	0.000805

- Non-LTO emissions, especially emissions from cruise altitudes cause the largest perturbation.
- Perturbations in O_3 , NO_v and PM 2.5 are statistically significant at 95% confidence level in the winter.
- However, considering uncertainties in the emission index (a factor to convert fuel burn rate to emission of each species) and amount of NH₃, **impacts** of aviation emissions on air quality in the boundary layer (e.g. several ppbv of O₃ and less than 1% increase of PM 2.5) are negligible. Statistical significance is meaningless here.
- Concentrations of hydrophilic aerosols and free ammonia could amplify aviation impacts from above the boundary layer.
- Non-LTO emissions decrease NO_v near the ground and limit O_3 increase.

• O₃ is increased by aviation emissions (not shown), but NO_v (mostly NO_x) is **decreased** up to 2% by non-LTO emissions in winter.

• These heterogeneous reactions can explain the smaller NO_v perturbation in July.

Q. Why does the surface NO_v decrease due to aviation emissions from the upper troposphere in the winter?

North Pole

- Factors determining impacts of non-LTO emissions in the boundary layer
- Background concentration of aerosols

cruise altitude emission

- Key chemical reactions during wintertime
- Sensitivity of aerosol formation to background NH₃ concentrations

Model and Data

- CAM (Community Atmosphere Model)-chem in offline mode
- 26 vertical levels covering up to 3.5 hPa, with the horizontal resolution of approximately a 2.5° (longitude) \times 2.0° (latitude)
- Meteorological fields from online CAM-chem run representing

Figure 13. (a) Differences in the boundary layer PN 2.5 due to the doubled NH_3 flux (air_2X_ NH_3 $no_air_2x_NH_3$ – aircraft + control) in January. (b) The relative PM 2.5 perturbation (air_2X_ NH_3 $no_air_2x_NH_3$ /(aircraft - control) * 100 [%].

relative difference [%]

2002

Aviation emission data from the Boeing Company for year of 1999

Case	LTO emissions (0-1 km)	Climb/descent emissions (1-8 km)	Cruise altitude emissions (above 8 km)
control	No	No	Νο
aircraft	Yes	Yes	Yes
aircraft_non_LTO	No	Yes	Yes
cruise	No	No	Yes
air_2x_NH ₃ (double NH ₃ flux)	Yes	Yes	Yes
no_air_2x_NH ₃ (double NH ₃ flux)	No	Νο	No

Figure 9. A diagram describing the boundary between OH regime and NO₃ regime and the intersection of the NO3 regime and the high aerosol concentration near the surface.

Latitude

35N

Figure 10. A schematic diagram explaining the changes in perturbation made by non-LTO emissions while propagating and why the perturbations decrease the NOx in the boundary layer during the wintertime.

and the simulations with aircraft emissions in January. [Top] (aircraft – control) [bottom left] (aircraft_non_LTO – control) and [bottom right] (aircraft – non_LTO).

Figure 11. Percentage differences in the boundary layer PM 2.5 between the control

 PM 2.5 in Midwest and East Coast of the US, Europe and East Asia show statistically significant influence of aviation emissions. (about 0.1 ppb ~ 0.1 μ g/m³). • Even the relatively large PM 2.5 perturbation in January changes at most 1% of the

• The increase of PM 2.5 in the lower troposphere in January is mostly due to NH₄NO₃ due to increased HNO_3 .

- With higher NH₃, the sensitivity of non-LTO emissions effects on PM 2.5 is strongest in the East Coast of the US and Europe.
- In these regions with heavy air traffic, doubled ground NH₃ fluxes increase more than 100% PM 2.5.
- Remaining uncertainties of NH₃ and background aerosols could amplify or diminish impacts of non-LTO emissions on air quality.
- However, even the doubled PM 2.5 increase with doubled NH₃ fluxes on PM 2.5 is not critical.

Acknowledgements The authors would like to thank the Federal Aviation Administration, Aviation Climate Change Research Initiative (ACCRI) for support under Contract #: 10-C-NE-UI amendment 001 and The Partnership for AiR Transportation Noise and Emissions Reduction (PARTNER). We also acknowledge the Boeing Company for support of this project, and a special thank you to Dr. Steven Baughcum for his valuable comments.